Antioxidant Effect of Salvianolic Acid B on Hippocampal CA1 Neurons in Mice with Cerebral Ischemia and Reperfusion Injury

Objetive: TO investigate the neuroprotective effects and underlying mechanisms of salvianolic acid B (Sal B) extracted from Salvia miltiorrhiza on hippocampal CA1 neurons in mice with cerebral ischemia reperfusion injury. Methods: Forty male National Institute of Health (NIH) mice were randomly divi...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of integrative medicine Vol. 21; no. 7; pp. 516 - 522
Main Author 蒋玉凤 刘智勤 崔巍 张文通 龚家培 王玺玫 张颖 杨美娟
Format Journal Article
LanguageEnglish
Published Beijing Chinese Association of Traditional and Western Medicine 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objetive: TO investigate the neuroprotective effects and underlying mechanisms of salvianolic acid B (Sal B) extracted from Salvia miltiorrhiza on hippocampal CA1 neurons in mice with cerebral ischemia reperfusion injury. Methods: Forty male National Institute of Health (NIH) mice were randomly divided into 4 groups with 10 animals each, including the sham group, the model group, the SalB group (SalB 22.5 mg/kg) and the nimodipine (Nim) group (Nim 1 mg/kg). A mouse model of cerebral ischemia and reperfusion injury was established by bilateral carotid artery occlusion for 30 rain followed by 24-h reperfusion. The malondialdehyde (MDA) content, the nitric oxide synthase (NOS) activity, the superoxide dismutase (SOD) activity and total anti- oxidant capability (T-AOC) of the pallium were determined by biochemistry methods. The morphologic changes and Bcl-2 and Bax protein expression in hippocampal CA1 neurons were observed by using hematoxylin- eosin staining and immunohistochemistry staining, respectively. Results: In the SalB group, the MDA content and the NOS activity of the pallium in cerebral ischemia-reperfusion mice significantly decreased and the SOD activity and the T-AOC significantly increased, as compared with the model group (P〈0.05 or P〈0.01). The SalB treatment also rescued neuronal loss (P〈0.01) in the hippocampal CA1 region, strongly promoted Bcl-2 protein expression (P〈0.01) and inhibited Bax protein expression (P〈0.05). Conclusions: SalB increases the level of antioxidant substances and decreases free radicals production. Moreover, it also improves Bcl-2 expression and reduces Bax expression. SalB may exert the neuroprotective effect through mitochondria-dependent pathway on hippocampal CA1 neurons in mice with cerebral ischemia and reperfusion injury and suggested that SalB represents a promising candidate for the prevention and treatment of ischemic cerebrovascular disease.
Bibliography:11-4928/R
Objetive: TO investigate the neuroprotective effects and underlying mechanisms of salvianolic acid B (Sal B) extracted from Salvia miltiorrhiza on hippocampal CA1 neurons in mice with cerebral ischemia reperfusion injury. Methods: Forty male National Institute of Health (NIH) mice were randomly divided into 4 groups with 10 animals each, including the sham group, the model group, the SalB group (SalB 22.5 mg/kg) and the nimodipine (Nim) group (Nim 1 mg/kg). A mouse model of cerebral ischemia and reperfusion injury was established by bilateral carotid artery occlusion for 30 rain followed by 24-h reperfusion. The malondialdehyde (MDA) content, the nitric oxide synthase (NOS) activity, the superoxide dismutase (SOD) activity and total anti- oxidant capability (T-AOC) of the pallium were determined by biochemistry methods. The morphologic changes and Bcl-2 and Bax protein expression in hippocampal CA1 neurons were observed by using hematoxylin- eosin staining and immunohistochemistry staining, respectively. Results: In the SalB group, the MDA content and the NOS activity of the pallium in cerebral ischemia-reperfusion mice significantly decreased and the SOD activity and the T-AOC significantly increased, as compared with the model group (P〈0.05 or P〈0.01). The SalB treatment also rescued neuronal loss (P〈0.01) in the hippocampal CA1 region, strongly promoted Bcl-2 protein expression (P〈0.01) and inhibited Bax protein expression (P〈0.05). Conclusions: SalB increases the level of antioxidant substances and decreases free radicals production. Moreover, it also improves Bcl-2 expression and reduces Bax expression. SalB may exert the neuroprotective effect through mitochondria-dependent pathway on hippocampal CA1 neurons in mice with cerebral ischemia and reperfusion injury and suggested that SalB represents a promising candidate for the prevention and treatment of ischemic cerebrovascular disease.
Salvianolic acid B, ischemia-reperfusion, hippocampus, neuron, apoptosis
JIANG Yu-feng , LIU Zhi-qin , CUI Wei , ZHANG Wen-tong, GONG Jia-pei , WANG Xi-mei , ZHANG Ying , and YANG Mei-juan (1. Department of Pathology, Beijing University of Chinese Medicine, Beijing 100029, China; 2. Department of Pharmacology, College of Pharmacy, Hebei University, Baoding, Hebei Province 071002, China; 3. Beijing Institute of Heart, Lung and Vessel Diseases, Beijing Anzhen Hospital, Capital University of Medical Sciences, Beijing 100029, China; 4. Department of Province Neurology, Beijing Huimin Hospital, Beijing 100054, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1672-0415
1993-0402
1993-0402
DOI:10.1007/s11655-014-1791-1