Anisotropy of Earth's D layer and stacking faults in the MgSiO3 post-perovskite phase

The post-perovskite phase of (Mg,Fe)SiO3 is believed to be the main mineral phase of the Earth's lowermost mantle (the D'' layer). Its properties explain numerous geophysical observations associated with this layer-for example, the D'' discontinuity, its topography and seism...

Full description

Saved in:
Bibliographic Details
Published inNature Vol. 438; no. 7071; pp. 1142 - 1144
Main Authors OGANOV, Artem R, MARTONAK, Roman, LAIO, Alessandro, RAITERI, Paolo, PARRINELLO, Michele
Format Journal Article
LanguageEnglish
Published London Nature Publishing 22.12.2005
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The post-perovskite phase of (Mg,Fe)SiO3 is believed to be the main mineral phase of the Earth's lowermost mantle (the D'' layer). Its properties explain numerous geophysical observations associated with this layer-for example, the D'' discontinuity, its topography and seismic anisotropy within the layer. Here we use a novel simulation technique, first-principles metadynamics, to identify a family of low-energy polytypic stacking-fault structures intermediate between the perovskite and post-perovskite phases. Metadynamics trajectories identify plane sliding involving the formation of stacking faults as the most favourable pathway for the phase transition, and as a likely mechanism for plastic deformation of perovskite and post-perovskite. In particular, the predicted slip planes are {010} for perovskite (consistent with experiment) and {110} for post-perovskite (in contrast to the previously expected {010} slip planes). Dominant slip planes define the lattice preferred orientation and elastic anisotropy of the texture. The {110} slip planes in post-perovskite require a much smaller degree of lattice preferred orientation to explain geophysical observations of shear-wave anisotropy in the D'' layer.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0028-0836
1476-4687
1476-4679
DOI:10.1038/nature04439