Effect of Sintering Temperatures on Grain Coarsening Behaviors and Mechanical Properties of W-NiTi Heavy Tungsten Alloys

W-NiTi tungsten heavy alloys were prepared by an infiltration process using submicron W powders, and the effect of sintering temperatures on grain-coarsening behaviors and the mechanical properties of W-NiTi tungsten heavy alloys were investigated. The microstructures and mechanical properties were...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 22; p. 8035
Main Authors Shao, Yang, Yu, Weikang, Wu, Jifei, Ma, Haiwen
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:W-NiTi tungsten heavy alloys were prepared by an infiltration process using submicron W powders, and the effect of sintering temperatures on grain-coarsening behaviors and the mechanical properties of W-NiTi tungsten heavy alloys were investigated. The microstructures and mechanical properties were investigated using scanning electron microscopy, X-ray diffraction and compression tests. The results showed that tungsten particles were uniformly distributed in the NiTi binder. The W-NiTi tungsten heavy alloys consisted of B19'-NiTi and body-centered cubic W phases. The average tungsten particle sizes of W-NiTi tungsten heavy alloys sintered at 1400 °C, 1480 °C and 1560 °C were 2.62 μm, 4.04 μm and 5.20 μm, respectively. The average tungsten particle size increased with sintering temperatures, while the densities decreased at higher temperatures. The cavities retained in the W-NiTi tungsten heavy alloy sintered at 1560 °C, which degraded the mechanical properties. The calculated grain growth activation energy of W particles in the NiTi binder was 330 kJ/mol, which was higher than those in conventional W-NiFe and W-NiCo tungsten heavy alloys. The higher activation energy means more difficult diffusion process of W atoms in NiTi binders during sintering. Therefore, finer-grained heavy tungsten alloys were more easily obtained by using NiTi binders. Yield strength of W-NiTi tungsten heavy alloys decreased with increasing sintering temperatures due to coarsened tungsten particles.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15228035