Involvement of a guanine-nucleotide-binding component in membrane IgM- stimulated phosphoinositide breakdown

Cross-linking of membrane immunoglobulin, the B cell receptor for antigen, activates the phosphoinositide signal transduction pathway. The initial event in this pathway is the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) by phospholipase C. This reaction yields two intracellular se...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 139; no. 11; pp. 3604 - 3613
Main Authors Gold, MR, Jakway, JP, DeFranco, AL
Format Journal Article
LanguageEnglish
Published Bethesda, MD Am Assoc Immnol 01.12.1987
American Association of Immunologists
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cross-linking of membrane immunoglobulin, the B cell receptor for antigen, activates the phosphoinositide signal transduction pathway. The initial event in this pathway is the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) by phospholipase C. This reaction yields two intracellular second messengers, diacylglycerol, which activates protein kinase C, and inositol trisphosphate, which causes an increase in cytoplasmic Ca2+. The experiments reported here demonstrate that activation of phospholipase C by membrane IgM (mIgM) involves a guanine nucleotide-dependent step. Saponin was used to permeabilize WEHI-231 B lymphoma cells and permit direct manipulation of nucleotide and Ca2+ concentrations. Very high levels of Ca2+ (greater than 100 microM) activated the phospholipase maximally without a requirement for cross-linking of mIgM. However, at much lower, physiologically relevant Ca2+ concentrations (100 to 500 nM), receptor-stimulated PtdInsP2 hydrolysis could be demonstrated. The ability of anti-IgM antibodies to activate phospholipase C in permeabilized WEHI-231 cells was greatly increased by nonhydrolyzable guanosine 5'-triphosphate (GTP) analogues (guanosine-5'-O-(3-thiotriphosphate) or 5'-guanylylimidodiphosphate), but not by guanosine diphosphate or guanosine diphosphate analogues or by a nonhydrolyzable analogue of adenosine triphosphate. This specificity for GTP analogues is consistent with the hypothesis that a GTP-binding regulatory protein analogous to those that couple receptors to adenylate cyclase is involved in the activation of phospholipase C by mIgM in WEHI-231 B lymphoma cells. In order to characterize this putative GTP-binding component, we examined the ability of pertussis toxin and cholera toxin to affect anti-IgM-stimulated inositol phosphate production. These bacterial toxins covalently modify and modulate the activity of various GTP-binding regulatory proteins and in some cell types can block receptor-stimulated PtdInsP2 breakdown. In WEHI-231 B lymphoma cells, neither toxin blocked signaling by mIgM. Thus mIgM appears to be coupled to the phosphoinositide signaling pathway by a GTP-dependent component that is insensitive to both pertussis toxin and cholera toxin.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.139.11.3604