Move That Fatty Acid: Fuel Selection and Transport in Migratory Birds and Bats

The metaphor of marathon running is inadequate to fully capture the magnitude of long-distance migratory flight of birds. In some respects a journey to the moon seems more appropriate. Birds have no access to supplementary water or nutrition during a multi-day flight, and they must carefully budget...

Full description

Saved in:
Bibliographic Details
Published inIntegrative and Comparative Biology Vol. 50; no. 3; pp. 336 - 345
Main Author Guglielmo, Christopher G.
Format Conference Proceeding Journal Article
LanguageEnglish
Published England Oxford University Press 01.09.2010
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The metaphor of marathon running is inadequate to fully capture the magnitude of long-distance migratory flight of birds. In some respects a journey to the moon seems more appropriate. Birds have no access to supplementary water or nutrition during a multi-day flight, and they must carefully budget their body fat and protein stores to provide both fuel and life support. Fatty acid transport is crucial to successful non-stop migratory flight in birds. Although fat is the most energy-dense metabolic fuel, the insolubility of its component fatty acids makes them difficult to transport to working muscles fast enough to support the highly aerobic exercise required to fly. Recent evidence indicates that migratory birds compensate for this by expressing large amounts of fatty acid transport proteins on the membranes of the muscles (FAT/CD36 and FABPpm) and in the cytosol (H-FABP). Through endogenous mechanisms and/or diet, migratory birds may alter the fatty acid composition of the fat stores and muscle membranes to improve endurance during flight. Fatty acid chain length, degree of unsaturation, and placement of double bonds can affect the rate of mobilization of fatty acids from adipose tissue, utilization of fatty acids by muscles, and whole-animal performance. However, there is great uncertainty about how important fatty acid composition is to the success of migration or whether particular types of fatty acids (e.g., omega-3 or omega-6) are most beneficial. Migratory bats provide an interesting example of evolutionary convergence with birds, which may provide evidence for the generality of the bird model to the evolution of migration by flight in vertebrates. Yet only recently have attempts been made to study bat migration physiology. Many aspects of their fuel metabolism are predicted to be more similar to those of migrant birds than to those of non-flying mammals. Bats may be distinct from most birds in their potential to conserve energy by using torpor between flights, and in the behavioral and physiological trade-offs they may make between migration and reproduction, which often overlap.
Bibliography:ark:/67375/HXZ-NQT970KX-K
From the symposium “Integrative Migration Biology” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2010, at Seattle, Washington.
istex:FA9D49E71E6949F8539CCDBBD9D4B2633AAD1713
ArticleID:icq097
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1540-7063
1557-7023
DOI:10.1093/icb/icq097