Subject-Specific Modeling of EEG-fNIRS Neurovascular Coupling by Task-Related Tensor Decomposition
Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is a promising way to explore the NVC. However, the high-order property of EEG data an...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 452 - 461 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
2024
IEEE |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is a promising way to explore the NVC. However, the high-order property of EEG data and variability of hemodynamic response function (HRF) across subjects have not been well considered in existing NVC studies. In this study, we proposed a novel framework to enhance the subject-specific parametric modeling of NVC from simultaneous EEG-fNIRS measurement. Specifically, task-related tensor decomposition of high-order EEG data was performed to extract the underlying connections in the temporal-spectral-spatial structures of EEG activities and identify the most relevant temporal signature within multiple trials. Subject-specific HRFs were estimated by parameters optimization of a double gamma function model. A canonical motor task experiment was designed to induce neural activity and validate the effectiveness of the proposed framework. The results indicated that the proposed framework significantly improves the reproducibility of EEG components and the correlation between the predicted hemodynamic activities and the real fNIRS signal. Moreover, the estimated parameters characterized the NVC differences in the task with two speeds. Therefore, the proposed framework provides a feasible solution for the quantitative assessment of the NVC function. |
---|---|
AbstractList | Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is a promising way to explore the NVC. However, the high-order property of EEG data and variability of hemodynamic response function (HRF) across subjects have not been well considered in existing NVC studies. In this study, we proposed a novel framework to enhance the subject-specific parametric modeling of NVC from simultaneous EEG-fNIRS measurement. Specifically, task-related tensor decomposition of high-order EEG data was performed to extract the underlying connections in the temporal-spectral-spatial structures of EEG activities and identify the most relevant temporal signature within multiple trials. Subject-specific HRFs were estimated by parameters optimization of a double gamma function model. A canonical motor task experiment was designed to induce neural activity and validate the effectiveness of the proposed framework. The results indicated that the proposed framework significantly improves the reproducibility of EEG components and the correlation between the predicted hemodynamic activities and the real fNIRS signal. Moreover, the estimated parameters characterized the NVC differences in the task with two speeds. Therefore, the proposed framework provides a feasible solution for the quantitative assessment of the NVC function. Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is a promising way to explore the NVC. However, the high-order property of EEG data and variability of hemodynamic response function (HRF) across subjects have not been well considered in existing NVC studies. In this study, we proposed a novel framework to enhance the subject-specific parametric modeling of NVC from simultaneous EEG-fNIRS measurement. Specifically, task-related tensor decomposition of high-order EEG data was performed to extract the underlying connections in the temporal-spectral-spatial structures of EEG activities and identify the most relevant temporal signature within multiple trials. Subject-specific HRFs were estimated by parameters optimization of a double gamma function model. A canonical motor task experiment was designed to induce neural activity and validate the effectiveness of the proposed framework. The results indicated that the proposed framework significantly improves the reproducibility of EEG components and the correlation between the predicted hemodynamic activities and the real fNIRS signal. Moreover, the estimated parameters characterized the NVC differences in the task with two speeds. Therefore, the proposed framework provides a feasible solution for the quantitative assessment of the NVC function.Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is a promising way to explore the NVC. However, the high-order property of EEG data and variability of hemodynamic response function (HRF) across subjects have not been well considered in existing NVC studies. In this study, we proposed a novel framework to enhance the subject-specific parametric modeling of NVC from simultaneous EEG-fNIRS measurement. Specifically, task-related tensor decomposition of high-order EEG data was performed to extract the underlying connections in the temporal-spectral-spatial structures of EEG activities and identify the most relevant temporal signature within multiple trials. Subject-specific HRFs were estimated by parameters optimization of a double gamma function model. A canonical motor task experiment was designed to induce neural activity and validate the effectiveness of the proposed framework. The results indicated that the proposed framework significantly improves the reproducibility of EEG components and the correlation between the predicted hemodynamic activities and the real fNIRS signal. Moreover, the estimated parameters characterized the NVC differences in the task with two speeds. Therefore, the proposed framework provides a feasible solution for the quantitative assessment of the NVC function. |
Author | Lin, Jianeng Shu, Zhilin Han, Jianda Yu, Ningbo Lu, Jiewei |
Author_xml | – sequence: 1 givenname: Jianeng orcidid: 0000-0002-0811-9423 surname: Lin fullname: Lin, Jianeng organization: College of Artificial Intelligence, Nankai University, Tianjin, China – sequence: 2 givenname: Jiewei surname: Lu fullname: Lu, Jiewei organization: College of Artificial Intelligence, Nankai University, Tianjin, China – sequence: 3 givenname: Zhilin surname: Shu fullname: Shu, Zhilin organization: College of Artificial Intelligence, Nankai University, Tianjin, China – sequence: 4 givenname: Jianda orcidid: 0000-0002-9664-4534 surname: Han fullname: Han, Jianda organization: College of Artificial Intelligence, Nankai University, Tianjin, China – sequence: 5 givenname: Ningbo orcidid: 0000-0003-2159-3055 surname: Yu fullname: Yu, Ningbo organization: College of Artificial Intelligence, Nankai University, Tianjin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38231809$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1URB_wB1igkdiwmeDnjL1EaWgjlSAlYW3ZnjuVw2Qc7Bmk_ns8SdpFF8iSbV195_hen2t00YceEPpI8IwQrL5uV5v1YkYx5TPGhCCUvEFXRAhZYkrwxXRnvOSM4kt0ndIOY1JXon6HLpmkjEisrpDdjHYHbig3B3C-9a74ERrofP9YhLZYLO7KdrVcb4oVjDH8NcmNnYnFPIyHI2Ofiq1Jv8s1dGaApthCn0IsbsGF_SEkP_jQv0dvW9Ml-HA-b9Cv74vt_L58-Hm3nH97KB3nZChrYgzD1HJbEYyVEFWtmqpqDK8luKY1VBmBm6plolUgXZNrgJkAU1smuWM3aHnybYLZ6UP0exOfdDBeHwshPmoTB-860BURzsi2orWVPL-qaF7MWtlKomqDs9eXk9chhj8jpEHvfXLQdaaHMCZNFak4VlKIjH5-he7CGPs86URJnDfCM_XpTI12D81Le89JZECeABdDShFa7fxgpv8bovGdJlhPoetj6HoKXZ9Dz1L6Svrs_h_RPyjJrRk |
CitedBy_id | crossref_primary_10_3390_electronics13071310 crossref_primary_10_1109_TIM_2025_3538086 |
Cites_doi | 10.1088/0967-3334/33/2/259 10.1002/hbm.24818 10.1002/hbm.22623 10.1093/brain/awac174 10.1038/s41593-023-01457-7 10.1002/hbm.21289 10.1016/j.neuroimage.2012.03.049 10.1016/j.neuroimage.2012.08.044 10.4324/9780203771587 10.1016/j.neuron.2017.07.030 10.1016/j.neuroimage.2008.08.036 10.1109/TNSRE.2021.3111564 10.1016/j.neuroimage.2009.10.028 10.3352/jeehp.2021.18.17 10.1117/1.NPh.5.1.015003 10.1109/TBME.2006.889206 10.3389/fnhum.2020.00030 10.3171/2018.5.JNS18754 10.1016/j.neuroimage.2009.09.011 10.1016/j.neuroimage.2020.117597 10.1002/hbm.23170 10.1109/TBME.2020.2971679 10.1093/cercor/bhab525 10.1016/j.neubiorev.2018.11.011 10.1109/TSP.2019.2899289 10.1002/hbm.25902 10.1016/j.compbiomed.2023.106968 10.1016/j.jneumeth.2003.10.009 10.1111/j.1528-1167.2007.01031.x 10.1109/MSP.2013.2297439 10.1109/TBME.2022.3204718 10.1016/j.jneumeth.2015.03.018 10.1146/annurev-neuro-100220-093239 10.1016/S1053-8119(03)00286-6 10.1002/mrm.1910390602 10.1109/TNSRE.2014.2332450 10.1016/j.jneumeth.2019.108502 10.1088/1741-2560/13/4/046026 10.1364/AO.48.00D280 10.1088/1741-2552/aab66b |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2024.3355121 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 461 |
ExternalDocumentID | oai_doaj_org_article_615ca8f627b84a30929293bb8f8197a0 38231809 10_1109_TNSRE_2024_3355121 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AAYXX ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIE RIG RNS CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD AASAJ AAWTH F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 RIA 7X8 |
ID | FETCH-LOGICAL-c441t-71aa302b4b6100955679d66da478ecdfa29a50d6f35f9e8cdcdfe035ea7b384c3 |
IEDL.DBID | DOA |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:14:55 EDT 2025 Fri Jul 11 06:35:02 EDT 2025 Sun Jul 13 05:14:21 EDT 2025 Wed Feb 19 01:58:20 EST 2025 Tue Jul 01 00:43:30 EDT 2025 Thu Apr 24 22:52:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-71aa302b4b6100955679d66da478ecdfa29a50d6f35f9e8cdcdfe035ea7b384c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2159-3055 0000-0002-0811-9423 0000-0002-9664-4534 |
OpenAccessLink | https://doaj.org/article/615ca8f627b84a30929293bb8f8197a0 |
PMID | 38231809 |
PQID | 2918029114 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_615ca8f627b84a30929293bb8f8197a0 proquest_miscellaneous_2916409855 proquest_journals_2918029114 pubmed_primary_38231809 crossref_citationtrail_10_1109_TNSRE_2024_3355121 crossref_primary_10_1109_TNSRE_2024_3355121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2024 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) IEEE |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 Vervliet (ref33) 2016 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref26 doi: 10.1088/0967-3334/33/2/259 – ident: ref1 doi: 10.1002/hbm.24818 – ident: ref9 doi: 10.1002/hbm.22623 – ident: ref7 doi: 10.1093/brain/awac174 – ident: ref19 doi: 10.1038/s41593-023-01457-7 – ident: ref35 doi: 10.1002/hbm.21289 – ident: ref13 doi: 10.1016/j.neuroimage.2012.03.049 – ident: ref34 doi: 10.1016/j.neuroimage.2012.08.044 – ident: ref20 doi: 10.4324/9780203771587 – ident: ref6 doi: 10.1016/j.neuron.2017.07.030 – ident: ref36 doi: 10.1016/j.neuroimage.2008.08.036 – ident: ref32 doi: 10.1109/TNSRE.2021.3111564 – ident: ref12 doi: 10.1016/j.neuroimage.2009.10.028 – ident: ref18 doi: 10.3352/jeehp.2021.18.17 – ident: ref27 doi: 10.1117/1.NPh.5.1.015003 – ident: ref39 doi: 10.1109/TBME.2006.889206 – ident: ref28 doi: 10.3389/fnhum.2020.00030 – ident: ref4 doi: 10.3171/2018.5.JNS18754 – volume-title: Tensorlab |A Matlab Package for Tensor Computations year: 2016 ident: ref33 – ident: ref37 doi: 10.1016/j.neuroimage.2009.09.011 – ident: ref40 doi: 10.1016/j.neuroimage.2020.117597 – ident: ref8 doi: 10.1002/hbm.23170 – ident: ref14 doi: 10.1109/TBME.2020.2971679 – ident: ref15 doi: 10.1093/cercor/bhab525 – ident: ref2 doi: 10.1016/j.neubiorev.2018.11.011 – ident: ref17 doi: 10.1109/TSP.2019.2899289 – ident: ref16 doi: 10.1002/hbm.25902 – ident: ref5 doi: 10.1016/j.compbiomed.2023.106968 – ident: ref23 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref24 doi: 10.1111/j.1528-1167.2007.01031.x – ident: ref30 doi: 10.1109/MSP.2013.2297439 – ident: ref3 doi: 10.1109/TBME.2022.3204718 – ident: ref29 doi: 10.1016/j.jneumeth.2015.03.018 – ident: ref10 doi: 10.1146/annurev-neuro-100220-093239 – ident: ref11 doi: 10.1016/S1053-8119(03)00286-6 – ident: ref41 doi: 10.1002/mrm.1910390602 – ident: ref38 doi: 10.1109/TNSRE.2014.2332450 – ident: ref31 doi: 10.1016/j.jneumeth.2019.108502 – ident: ref21 doi: 10.1088/1741-2560/13/4/046026 – ident: ref25 doi: 10.1364/AO.48.00D280 – ident: ref22 doi: 10.1088/1741-2552/aab66b |
SSID | ssj0017657 |
Score | 2.4317129 |
Snippet | Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 452 |
SubjectTerms | Coupling Decomposition EEG EEG-fNIRS Electroencephalography Electroencephalography - methods Gamma function hemodynamic response function Hemodynamic responses Hemodynamics Hemodynamics - physiology Humans Infrared spectra Infrared spectroscopy Mathematical models Medical imaging Modelling Near infrared radiation Neurovascular coupling Neurovascular Coupling - physiology Parameter estimation Reproducibility of Results Response functions Spectroscopy Spectroscopy, Near-Infrared - methods subject-specific optimization task-related component analysis tensor decomposition Tensors |
Title | Subject-Specific Modeling of EEG-fNIRS Neurovascular Coupling by Task-Related Tensor Decomposition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38231809 https://www.proquest.com/docview/2918029114 https://www.proquest.com/docview/2916409855 https://doaj.org/article/615ca8f627b84a30929293bb8f8197a0 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp15QX7RpARmp9FK5ZONnjjyWUiT2sASJm2XHY6mi2iDYPfTfM3aSFRzaXrg6k8jxjP3N2ONvCPmio9e6DMAcLyMT6PQyF4AzzrVXGiSEzN15OVPn1-LiRt48KfWVcsJ6euB-4A4RcVtnoqq0NwI_iHCOCOW9iYhl2uVoHTFvDKaG8wOtpB6vyJT1YTO7mk8xGKzEd44AO6kmz2Aos_X_3cXMUHP2mmwNPiI96vv2hmzA4i05eMoHTJueDIB-pfNnVNvviMelIO2tsFxZPv5qaSp3li6d0y7S6fQHi7Of8yuaWTnGPFR60q3usoz_Qxv3cMtykhwE2mCY293TU0i550OC13tyfTZtTs7ZUEiBtejtLJmeOBy5yguPzlLinFO6DkoFJ7SBNkRX1U6WQUUuYw2mDdgGJZfgtOdGtHybbC66BXwkFKThrRbOpNlVG-WDiCp4jLN0BUpCQSbjuNp2-PVU7OK3zdFGWdusC5t0YQddFOTb-p27nmPjn9LHSV1rycSPnRvQauxgNfZ_VlOQnVHZdpi0D7aqEx0erv6iIPvrxzjd0hmKW0C3yjIKQ2IjZUE-9Eay7kk-UjVl_ekleviZvEp_3e_27JDN5f0KdtH_Wfq9bOqP24H_hw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Specific+Modeling+of+EEG-fNIRS+Neurovascular+Coupling+by+Task-Related+Tensor+Decomposition&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Lin%2C+Jianeng&rft.au=Lu%2C+Jiewei&rft.au=Shu%2C+Zhilin&rft.au=Han%2C+Jianda&rft.date=2024&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=32&rft.spage=452&rft.epage=461&rft_id=info:doi/10.1109%2FTNSRE.2024.3355121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2024_3355121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |