Subject-Specific Modeling of EEG-fNIRS Neurovascular Coupling by Task-Related Tensor Decomposition

Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is a promising way to explore the NVC. However, the high-order property of EEG data an...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 452 - 461
Main Authors Lin, Jianeng, Lu, Jiewei, Shu, Zhilin, Han, Jianda, Yu, Ningbo
Format Journal Article
LanguageEnglish
Published United States The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
IEEE
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is a promising way to explore the NVC. However, the high-order property of EEG data and variability of hemodynamic response function (HRF) across subjects have not been well considered in existing NVC studies. In this study, we proposed a novel framework to enhance the subject-specific parametric modeling of NVC from simultaneous EEG-fNIRS measurement. Specifically, task-related tensor decomposition of high-order EEG data was performed to extract the underlying connections in the temporal-spectral-spatial structures of EEG activities and identify the most relevant temporal signature within multiple trials. Subject-specific HRFs were estimated by parameters optimization of a double gamma function model. A canonical motor task experiment was designed to induce neural activity and validate the effectiveness of the proposed framework. The results indicated that the proposed framework significantly improves the reproducibility of EEG components and the correlation between the predicted hemodynamic activities and the real fNIRS signal. Moreover, the estimated parameters characterized the NVC differences in the task with two speeds. Therefore, the proposed framework provides a feasible solution for the quantitative assessment of the NVC function.
AbstractList Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is a promising way to explore the NVC. However, the high-order property of EEG data and variability of hemodynamic response function (HRF) across subjects have not been well considered in existing NVC studies. In this study, we proposed a novel framework to enhance the subject-specific parametric modeling of NVC from simultaneous EEG-fNIRS measurement. Specifically, task-related tensor decomposition of high-order EEG data was performed to extract the underlying connections in the temporal-spectral-spatial structures of EEG activities and identify the most relevant temporal signature within multiple trials. Subject-specific HRFs were estimated by parameters optimization of a double gamma function model. A canonical motor task experiment was designed to induce neural activity and validate the effectiveness of the proposed framework. The results indicated that the proposed framework significantly improves the reproducibility of EEG components and the correlation between the predicted hemodynamic activities and the real fNIRS signal. Moreover, the estimated parameters characterized the NVC differences in the task with two speeds. Therefore, the proposed framework provides a feasible solution for the quantitative assessment of the NVC function.
Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is a promising way to explore the NVC. However, the high-order property of EEG data and variability of hemodynamic response function (HRF) across subjects have not been well considered in existing NVC studies. In this study, we proposed a novel framework to enhance the subject-specific parametric modeling of NVC from simultaneous EEG-fNIRS measurement. Specifically, task-related tensor decomposition of high-order EEG data was performed to extract the underlying connections in the temporal-spectral-spatial structures of EEG activities and identify the most relevant temporal signature within multiple trials. Subject-specific HRFs were estimated by parameters optimization of a double gamma function model. A canonical motor task experiment was designed to induce neural activity and validate the effectiveness of the proposed framework. The results indicated that the proposed framework significantly improves the reproducibility of EEG components and the correlation between the predicted hemodynamic activities and the real fNIRS signal. Moreover, the estimated parameters characterized the NVC differences in the task with two speeds. Therefore, the proposed framework provides a feasible solution for the quantitative assessment of the NVC function.Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is a promising way to explore the NVC. However, the high-order property of EEG data and variability of hemodynamic response function (HRF) across subjects have not been well considered in existing NVC studies. In this study, we proposed a novel framework to enhance the subject-specific parametric modeling of NVC from simultaneous EEG-fNIRS measurement. Specifically, task-related tensor decomposition of high-order EEG data was performed to extract the underlying connections in the temporal-spectral-spatial structures of EEG activities and identify the most relevant temporal signature within multiple trials. Subject-specific HRFs were estimated by parameters optimization of a double gamma function model. A canonical motor task experiment was designed to induce neural activity and validate the effectiveness of the proposed framework. The results indicated that the proposed framework significantly improves the reproducibility of EEG components and the correlation between the predicted hemodynamic activities and the real fNIRS signal. Moreover, the estimated parameters characterized the NVC differences in the task with two speeds. Therefore, the proposed framework provides a feasible solution for the quantitative assessment of the NVC function.
Author Lin, Jianeng
Shu, Zhilin
Han, Jianda
Yu, Ningbo
Lu, Jiewei
Author_xml – sequence: 1
  givenname: Jianeng
  orcidid: 0000-0002-0811-9423
  surname: Lin
  fullname: Lin, Jianeng
  organization: College of Artificial Intelligence, Nankai University, Tianjin, China
– sequence: 2
  givenname: Jiewei
  surname: Lu
  fullname: Lu, Jiewei
  organization: College of Artificial Intelligence, Nankai University, Tianjin, China
– sequence: 3
  givenname: Zhilin
  surname: Shu
  fullname: Shu, Zhilin
  organization: College of Artificial Intelligence, Nankai University, Tianjin, China
– sequence: 4
  givenname: Jianda
  orcidid: 0000-0002-9664-4534
  surname: Han
  fullname: Han, Jianda
  organization: College of Artificial Intelligence, Nankai University, Tianjin, China
– sequence: 5
  givenname: Ningbo
  orcidid: 0000-0003-2159-3055
  surname: Yu
  fullname: Yu, Ningbo
  organization: College of Artificial Intelligence, Nankai University, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38231809$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1URB_wB1igkdiwmeDnjL1EaWgjlSAlYW3ZnjuVw2Qc7Bmk_ns8SdpFF8iSbV195_hen2t00YceEPpI8IwQrL5uV5v1YkYx5TPGhCCUvEFXRAhZYkrwxXRnvOSM4kt0ndIOY1JXon6HLpmkjEisrpDdjHYHbig3B3C-9a74ERrofP9YhLZYLO7KdrVcb4oVjDH8NcmNnYnFPIyHI2Ofiq1Jv8s1dGaApthCn0IsbsGF_SEkP_jQv0dvW9Ml-HA-b9Cv74vt_L58-Hm3nH97KB3nZChrYgzD1HJbEYyVEFWtmqpqDK8luKY1VBmBm6plolUgXZNrgJkAU1smuWM3aHnybYLZ6UP0exOfdDBeHwshPmoTB-860BURzsi2orWVPL-qaF7MWtlKomqDs9eXk9chhj8jpEHvfXLQdaaHMCZNFak4VlKIjH5-he7CGPs86URJnDfCM_XpTI12D81Le89JZECeABdDShFa7fxgpv8bovGdJlhPoetj6HoKXZ9Dz1L6Svrs_h_RPyjJrRk
CitedBy_id crossref_primary_10_3390_electronics13071310
crossref_primary_10_1109_TIM_2025_3538086
Cites_doi 10.1088/0967-3334/33/2/259
10.1002/hbm.24818
10.1002/hbm.22623
10.1093/brain/awac174
10.1038/s41593-023-01457-7
10.1002/hbm.21289
10.1016/j.neuroimage.2012.03.049
10.1016/j.neuroimage.2012.08.044
10.4324/9780203771587
10.1016/j.neuron.2017.07.030
10.1016/j.neuroimage.2008.08.036
10.1109/TNSRE.2021.3111564
10.1016/j.neuroimage.2009.10.028
10.3352/jeehp.2021.18.17
10.1117/1.NPh.5.1.015003
10.1109/TBME.2006.889206
10.3389/fnhum.2020.00030
10.3171/2018.5.JNS18754
10.1016/j.neuroimage.2009.09.011
10.1016/j.neuroimage.2020.117597
10.1002/hbm.23170
10.1109/TBME.2020.2971679
10.1093/cercor/bhab525
10.1016/j.neubiorev.2018.11.011
10.1109/TSP.2019.2899289
10.1002/hbm.25902
10.1016/j.compbiomed.2023.106968
10.1016/j.jneumeth.2003.10.009
10.1111/j.1528-1167.2007.01031.x
10.1109/MSP.2013.2297439
10.1109/TBME.2022.3204718
10.1016/j.jneumeth.2015.03.018
10.1146/annurev-neuro-100220-093239
10.1016/S1053-8119(03)00286-6
10.1002/mrm.1910390602
10.1109/TNSRE.2014.2332450
10.1016/j.jneumeth.2019.108502
10.1088/1741-2560/13/4/046026
10.1364/AO.48.00D280
10.1088/1741-2552/aab66b
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2024.3355121
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 461
ExternalDocumentID oai_doaj_org_article_615ca8f627b84a30929293bb8f8197a0
38231809
10_1109_TNSRE_2024_3355121
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AAYXX
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIE
RIG
RNS
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
AASAJ
AAWTH
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
RIA
7X8
ID FETCH-LOGICAL-c441t-71aa302b4b6100955679d66da478ecdfa29a50d6f35f9e8cdcdfe035ea7b384c3
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:14:55 EDT 2025
Fri Jul 11 06:35:02 EDT 2025
Sun Jul 13 05:14:21 EDT 2025
Wed Feb 19 01:58:20 EST 2025
Tue Jul 01 00:43:30 EDT 2025
Thu Apr 24 22:52:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-71aa302b4b6100955679d66da478ecdfa29a50d6f35f9e8cdcdfe035ea7b384c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2159-3055
0000-0002-0811-9423
0000-0002-9664-4534
OpenAccessLink https://doaj.org/article/615ca8f627b84a30929293bb8f8197a0
PMID 38231809
PQID 2918029114
PQPubID 85423
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_615ca8f627b84a30929293bb8f8197a0
proquest_miscellaneous_2916409855
proquest_journals_2918029114
pubmed_primary_38231809
crossref_citationtrail_10_1109_TNSRE_2024_3355121
crossref_primary_10_1109_TNSRE_2024_3355121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
IEEE
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
Vervliet (ref33) 2016
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref26
  doi: 10.1088/0967-3334/33/2/259
– ident: ref1
  doi: 10.1002/hbm.24818
– ident: ref9
  doi: 10.1002/hbm.22623
– ident: ref7
  doi: 10.1093/brain/awac174
– ident: ref19
  doi: 10.1038/s41593-023-01457-7
– ident: ref35
  doi: 10.1002/hbm.21289
– ident: ref13
  doi: 10.1016/j.neuroimage.2012.03.049
– ident: ref34
  doi: 10.1016/j.neuroimage.2012.08.044
– ident: ref20
  doi: 10.4324/9780203771587
– ident: ref6
  doi: 10.1016/j.neuron.2017.07.030
– ident: ref36
  doi: 10.1016/j.neuroimage.2008.08.036
– ident: ref32
  doi: 10.1109/TNSRE.2021.3111564
– ident: ref12
  doi: 10.1016/j.neuroimage.2009.10.028
– ident: ref18
  doi: 10.3352/jeehp.2021.18.17
– ident: ref27
  doi: 10.1117/1.NPh.5.1.015003
– ident: ref39
  doi: 10.1109/TBME.2006.889206
– ident: ref28
  doi: 10.3389/fnhum.2020.00030
– ident: ref4
  doi: 10.3171/2018.5.JNS18754
– volume-title: Tensorlab |A Matlab Package for Tensor Computations
  year: 2016
  ident: ref33
– ident: ref37
  doi: 10.1016/j.neuroimage.2009.09.011
– ident: ref40
  doi: 10.1016/j.neuroimage.2020.117597
– ident: ref8
  doi: 10.1002/hbm.23170
– ident: ref14
  doi: 10.1109/TBME.2020.2971679
– ident: ref15
  doi: 10.1093/cercor/bhab525
– ident: ref2
  doi: 10.1016/j.neubiorev.2018.11.011
– ident: ref17
  doi: 10.1109/TSP.2019.2899289
– ident: ref16
  doi: 10.1002/hbm.25902
– ident: ref5
  doi: 10.1016/j.compbiomed.2023.106968
– ident: ref23
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref24
  doi: 10.1111/j.1528-1167.2007.01031.x
– ident: ref30
  doi: 10.1109/MSP.2013.2297439
– ident: ref3
  doi: 10.1109/TBME.2022.3204718
– ident: ref29
  doi: 10.1016/j.jneumeth.2015.03.018
– ident: ref10
  doi: 10.1146/annurev-neuro-100220-093239
– ident: ref11
  doi: 10.1016/S1053-8119(03)00286-6
– ident: ref41
  doi: 10.1002/mrm.1910390602
– ident: ref38
  doi: 10.1109/TNSRE.2014.2332450
– ident: ref31
  doi: 10.1016/j.jneumeth.2019.108502
– ident: ref21
  doi: 10.1088/1741-2560/13/4/046026
– ident: ref25
  doi: 10.1364/AO.48.00D280
– ident: ref22
  doi: 10.1088/1741-2552/aab66b
SSID ssj0017657
Score 2.4317129
Snippet Neurovascular coupling (NVC) connects neural activity with hemodynamics and plays a vital role in sustaining brain function. Combining electroencephalography...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 452
SubjectTerms Coupling
Decomposition
EEG
EEG-fNIRS
Electroencephalography
Electroencephalography - methods
Gamma function
hemodynamic response function
Hemodynamic responses
Hemodynamics
Hemodynamics - physiology
Humans
Infrared spectra
Infrared spectroscopy
Mathematical models
Medical imaging
Modelling
Near infrared radiation
Neurovascular coupling
Neurovascular Coupling - physiology
Parameter estimation
Reproducibility of Results
Response functions
Spectroscopy
Spectroscopy, Near-Infrared - methods
subject-specific optimization
task-related component analysis
tensor decomposition
Tensors
Title Subject-Specific Modeling of EEG-fNIRS Neurovascular Coupling by Task-Related Tensor Decomposition
URI https://www.ncbi.nlm.nih.gov/pubmed/38231809
https://www.proquest.com/docview/2918029114
https://www.proquest.com/docview/2916409855
https://doaj.org/article/615ca8f627b84a30929293bb8f8197a0
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp15QX7RpARmp9FK5ZONnjjyWUiT2sASJm2XHY6mi2iDYPfTfM3aSFRzaXrg6k8jxjP3N2ONvCPmio9e6DMAcLyMT6PQyF4AzzrVXGiSEzN15OVPn1-LiRt48KfWVcsJ6euB-4A4RcVtnoqq0NwI_iHCOCOW9iYhl2uVoHTFvDKaG8wOtpB6vyJT1YTO7mk8xGKzEd44AO6kmz2Aos_X_3cXMUHP2mmwNPiI96vv2hmzA4i05eMoHTJueDIB-pfNnVNvviMelIO2tsFxZPv5qaSp3li6d0y7S6fQHi7Of8yuaWTnGPFR60q3usoz_Qxv3cMtykhwE2mCY293TU0i550OC13tyfTZtTs7ZUEiBtejtLJmeOBy5yguPzlLinFO6DkoFJ7SBNkRX1U6WQUUuYw2mDdgGJZfgtOdGtHybbC66BXwkFKThrRbOpNlVG-WDiCp4jLN0BUpCQSbjuNp2-PVU7OK3zdFGWdusC5t0YQddFOTb-p27nmPjn9LHSV1rycSPnRvQauxgNfZ_VlOQnVHZdpi0D7aqEx0erv6iIPvrxzjd0hmKW0C3yjIKQ2IjZUE-9Eay7kk-UjVl_ekleviZvEp_3e_27JDN5f0KdtH_Wfq9bOqP24H_hw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Specific+Modeling+of+EEG-fNIRS+Neurovascular+Coupling+by+Task-Related+Tensor+Decomposition&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Lin%2C+Jianeng&rft.au=Lu%2C+Jiewei&rft.au=Shu%2C+Zhilin&rft.au=Han%2C+Jianda&rft.date=2024&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=32&rft.spage=452&rft.epage=461&rft_id=info:doi/10.1109%2FTNSRE.2024.3355121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2024_3355121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon