Lymphocyte Inhibition Mechanisms and Immune Checkpoints in COVID-19: Insights into Prognostic Markers and Disease Severity
Background and Objectives: Immune checkpoint inhibitors such as PD-1 and TIM-3 play an important role in regulating the host immune response and are proposed as potential prognostic markers and therapeutic targets in severe cases of COVID-19. We evaluated the expression of PD-1 and TIM-3 on T cells,...
Saved in:
Published in | Medicina (Kaunas, Lithuania) Vol. 61; no. 2; p. 189 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
22.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background and Objectives: Immune checkpoint inhibitors such as PD-1 and TIM-3 play an important role in regulating the host immune response and are proposed as potential prognostic markers and therapeutic targets in severe cases of COVID-19. We evaluated the expression of PD-1 and TIM-3 on T cells, as well as the concentration of sPD-1 in plasma, to clarify the role of these molecules in patients infected with SARS-CoV-2. Materials and Methods: In this retrospective observational study, we analysed the expression of PD-1 and TIM-3 on CD4+ and CD8+ T cells upon admission and after 7 days of hospitalisation in 770 adult patients. We also evaluated sPD-1 levels in the plasma of 145 patients at different stages of COVID-19 and of 11 control subjects. Molecules were determined using conventional flow cytometry and ELISA and the data were statistically processed. Results: We observed a significantly higher expression of PD-1 on CD4+ cells in deceased patients than in those with mild-to-moderate disease. All patients with COVID-19 exhibited a significantly higher expression of TIM-3 on both CD4+ and CD8+ T cells compared to controls. After 1 week of hospitalisation, there was no significant change in PD-1 or TIM-3 expression on CD4+ or CD8+ T cells across the studied groups. sPD-1 concentrations were not significantly different between survivors and non-survivors. Plasma sPD-1 levels did not correlate with PD-1 expression on T cells, but a significant correlation was observed between CD4+ PD-1 and CD8+ PD-1. Using machine-learning algorithms, we supported our observations and confirmed immunological variables capable of predicting survival, with AUC = 0.786. Conclusions: Analysis of the immune response may be useful for monitoring and predicting the course of COVID-19 upon admission. However, it is essential to evaluate complex immune parameters in conjunction with other key clinical and laboratory indicators. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ISSN: | 1648-9144 1010-660X 1648-9144 |
DOI: | 10.3390/medicina61020189 |