Parallel Mechanism of Spectral Feature-Enhanced Maps in EEG-Based Cognitive Workload Classification
Electroencephalography (EEG) provides a non-invasive, portable and low-cost way to convert neural signals into electrical signals. Using EEG to monitor people’s cognitive workload means a lot, especially for tasks demanding high attention. Before deep neural networks became a research hotspot, the u...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 4; p. 808 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
16.02.2019
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Electroencephalography (EEG) provides a non-invasive, portable and low-cost way to convert neural signals into electrical signals. Using EEG to monitor people’s cognitive workload means a lot, especially for tasks demanding high attention. Before deep neural networks became a research hotspot, the use of spectrum information and the common spatial pattern algorithm (CSP) was the most popular method to classify EEG-based cognitive workloads. Recently, spectral maps have been combined with deep neural networks to achieve a final accuracy of 91.1% across four levels of cognitive workload. In this study, a parallel mechanism of spectral feature-enhanced maps is proposed which enhances the expression of structural information that may be compressed by inter- and intra-subject differences. A public dataset and milestone neural networks, such as AlexNet, VGGNet, ResNet, DenseNet are used to measure the effectiveness of this approach. As a result, the classification accuracy is improved from 91.10% to 93.71%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19040808 |