Response of glial cells and activation of complement following motorneuron degeneration induced by toxic ricin

Motor nerve transection in adult rats induce a series of metabolic and structural changes in the injured neurons as well as in surrounding glial cells; however, without substantial neuronal degeneration. In the present study we found, in contrast with axotomy, a massive neuronal death in the ipsilat...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience research Vol. 28; no. 2; pp. 167 - 175
Main Authors Törnquist, Eva, Liu, Li, Mattsson, Per, Svensson, Mikael
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.06.1997
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Motor nerve transection in adult rats induce a series of metabolic and structural changes in the injured neurons as well as in surrounding glial cells; however, without substantial neuronal degeneration. In the present study we found, in contrast with axotomy, a massive neuronal death in the ipsilateral hypoglossal nucleus following injection of toxic ricin (RCA) into the hypoglossal nerve, which is in line with previous observations. Injection of RCA enables examination of the glial reaction in a situation where neuronal degeneration is profound, which has been the approach in the present study. We found an increase in OX42-, GFAP-, and transferrin-immunoreactivity in microglial, astroglial, and oligodendroglial cells respectively, in the ipsilateral hypoglossal nucleus three to seven days following injection of toxic ricin in the hypoglossal nerve. Proliferation was found in astrocytes as well as in microglial cells, as shown by uptake of bromodeoxyuridine. In addition, the complement cascade was activated locally in the ipsilateral hypoglossal nucleus, as demonstrated by immunohistochemical detection of complement components C3d and C9. Complement activation may serve several effects in the glial-neuronal interactions. Stimulation of phagocytosis by reactive microglia is probably the most important one. Furthermore, the degenerative neuronal somata showed increased immunoreactivity for clusterin, which is a known complement inhibitor, but a decrease in clusterin-mRNA. In conclusion, the glial cell response was in several aspects principally different following massive motorneuron degeneration induced by toxic ricin in comparison to previous findings reported after axotomy.
ISSN:0168-0102
1872-8111
DOI:10.1016/S0168-0102(97)00040-0