Activity and inactivity of moth sex chromosomes in somatic and meiotic cells

Moths and butterflies (Lepidoptera) are the most species-rich group of animals with female heterogamety, females mostly having a WZ, males a ZZ sex chromosome constitution. We studied chromatin conformation, activity, and inactivity of the sex chromosomes in the flour moth Ephestia kuehniella and th...

Full description

Saved in:
Bibliographic Details
Published inChromosoma Vol. 128; no. 4; pp. 533 - 545
Main Authors Traut, W., Schubert, V., Daliková, M., Marec, F., Sahara, K.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Moths and butterflies (Lepidoptera) are the most species-rich group of animals with female heterogamety, females mostly having a WZ, males a ZZ sex chromosome constitution. We studied chromatin conformation, activity, and inactivity of the sex chromosomes in the flour moth Ephestia kuehniella and the silkworm Bombyx mori , using immunostaining with anti-H3K9me2/3, anti-RNA polymerase II, and fluoro-uridine (FU) labelling of nascent transcripts, with conventional widefield fluorescence microscopy and ‘spatial structured illumination microscopy’ (3D-SIM). The Z chromosome is euchromatic in somatic cells and throughout meiosis. It is transcriptionally active in somatic cells and in the postpachaytene stage of meiosis. The W chromosome in contrast is heterochromatic in somatic cells as well as in meiotic cells at pachytene, but euchromatic and transcriptionally active like all other chromosomes at postpachytene. As the W chromosomes are apparently devoid of protein-coding genes, their transcripts must be non-coding. We found no indication of ‘meiotic sex chromosome inactivation’ (MSCI) in the two species.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-5915
1432-0886
DOI:10.1007/s00412-019-00722-8