Wireless sensor localization based on distance optimization and assistance by mobile anchor nodes: a novel algorithm
Wireless sensor networks (WSNs) have wide applications in healthcare, environmental monitoring, and target tracking, relying on sensor nodes that are joined cooperatively. The research investigates localization algorithms for both target and node in WSNs to enhance accuracy. An innovative localizati...
Saved in:
Published in | PeerJ. Computer science Vol. 10; p. e2179 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
PeerJ. Ltd
31.07.2024
PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wireless sensor networks (WSNs) have wide applications in healthcare, environmental monitoring, and target tracking, relying on sensor nodes that are joined cooperatively. The research investigates localization algorithms for both target and node in WSNs to enhance accuracy. An innovative localization algorithm characterized as an asynchronous time-of-arrival (TOA) target is proposed by implementing a differential evolution algorithm. Unlike available approaches, the proposed algorithm employs the least squares criterion to represent signal-sending time as a function of the target position. The target node's coordinates are estimated by utilizing a differential evolution algorithm with reverse learning and adaptive redirection. A hybrid received signal strength (RSS)-TOA target localization algorithm is introduced, addressing the challenge of unknown transmission parameters. This algorithm simultaneously estimates transmitted power, path loss index, and target position by employing the RSS and TOA measurements. These proposed algorithms improve the accuracy and efficiency of wireless sensor localization, boosting performance in various WSN applications. |
---|---|
AbstractList | Wireless sensor networks (WSNs) have wide applications in healthcare, environmental monitoring, and target tracking, relying on sensor nodes that are joined cooperatively. The research investigates localization algorithms for both target and node in WSNs to enhance accuracy. An innovative localization algorithm characterized as an asynchronous time-of-arrival (TOA) target is proposed by implementing a differential evolution algorithm. Unlike available approaches, the proposed algorithm employs the least squares criterion to represent signal-sending time as a function of the target position. The target node’s coordinates are estimated by utilizing a differential evolution algorithm with reverse learning and adaptive redirection. A hybrid received signal strength (RSS)-TOA target localization algorithm is introduced, addressing the challenge of unknown transmission parameters. This algorithm simultaneously estimates transmitted power, path loss index, and target position by employing the RSS and TOA measurements. These proposed algorithms improve the accuracy and efficiency of wireless sensor localization, boosting performance in various WSN applications. Wireless sensor networks (WSNs) have wide applications in healthcare, environmental monitoring, and target tracking, relying on sensor nodes that are joined cooperatively. The research investigates localization algorithms for both target and node in WSNs to enhance accuracy. An innovative localization algorithm characterized as an asynchronous time-of-arrival (TOA) target is proposed by implementing a differential evolution algorithm. Unlike available approaches, the proposed algorithm employs the least squares criterion to represent signal-sending time as a function of the target position. The target node's coordinates are estimated by utilizing a differential evolution algorithm with reverse learning and adaptive redirection. A hybrid received signal strength (RSS)-TOA target localization algorithm is introduced, addressing the challenge of unknown transmission parameters. This algorithm simultaneously estimates transmitted power, path loss index, and target position by employing the RSS and TOA measurements. These proposed algorithms improve the accuracy and efficiency of wireless sensor localization, boosting performance in various WSN applications.Wireless sensor networks (WSNs) have wide applications in healthcare, environmental monitoring, and target tracking, relying on sensor nodes that are joined cooperatively. The research investigates localization algorithms for both target and node in WSNs to enhance accuracy. An innovative localization algorithm characterized as an asynchronous time-of-arrival (TOA) target is proposed by implementing a differential evolution algorithm. Unlike available approaches, the proposed algorithm employs the least squares criterion to represent signal-sending time as a function of the target position. The target node's coordinates are estimated by utilizing a differential evolution algorithm with reverse learning and adaptive redirection. A hybrid received signal strength (RSS)-TOA target localization algorithm is introduced, addressing the challenge of unknown transmission parameters. This algorithm simultaneously estimates transmitted power, path loss index, and target position by employing the RSS and TOA measurements. These proposed algorithms improve the accuracy and efficiency of wireless sensor localization, boosting performance in various WSN applications. |
ArticleNumber | e2179 |
Audience | Academic |
Author | Yang, Hui |
Author_xml | – sequence: 1 givenname: Hui surname: Yang fullname: Yang, Hui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39145245$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktr3DAUhUVJadI0y26LoZt24alk2ZbdTQmhj4FAoQ-6FNfS9YwGWZpKmtD011eTyYQYKi100fl09DrPyYnzDgl5yehCCCbebRHDplRxUTHRPyFnFRdt2fR9dfKoPiUXMW4opaxhufXPyCnvWd1UdXNG0i8T0GKMRUQXfSisV2DNX0jGu2KAiLrIhTYxgVNY-G0y01EGpwuI8agNt8XkB2MxC2qdvZzXGN8XkIsbtAXYlQ8mracX5OkINuLF_XhOfn76-OPqS3n99fPy6vK6VHXNUsmHETXnrG1gUFih6FvdAmfQCFqPXIxjy7uuG_uuVXWDtagEdFCBHgSA7gQ_J8uDr_awkdtgJgi30oORdxM-rCSEZJRFWbXIBVW8HpDXLYqhF6LFqlMoKLSKZa8PB6_tbphQK3QpgJ2ZzhVn1nLlbyRjvOK067PDm3uH4H_vMCY5majQWnDod1Fy2nMmGtrtN3t9QFeQz2bc6LOl2uPyMsv5-jXtMrX4D5W7xsmonJQx_8V8wdvZgswk_JNWsItRLr9_m7PlgVXBxxhwfLgqo3IfPnkXPqmi3Icv868ev88DfYwa_wcwndkB |
Cites_doi | 10.1016/j.aej.2023.09.064 10.1016/j.comcom.2023.09.015 10.3390/s20123466 10.1109/JSEN.2016.2519924 10.1016/j.cola.2021.101051 10.3390/info14010046 10.1016/j.iot.2023.101008 10.1109/LCOMM.2020.3016710 10.1109/LSP.2018.2879720 10.1007/s11235-022-00952-9 10.1109/TWC.2017.2766628 10.1023/A:1008202821328 10.1109/TSP.2011.2116012 10.1016/j.engappai.2023.107463 10.1016/j.swevo.2020.100768 10.3390/s23208426 10.1007/s11277-022-09775-y 10.1016/j.comnet.2022.108865 |
ContentType | Journal Article |
Copyright | 2024 Yang. COPYRIGHT 2024 PeerJ. Ltd. 2024 Yang 2024 Yang |
Copyright_xml | – notice: 2024 Yang. – notice: COPYRIGHT 2024 PeerJ. Ltd. – notice: 2024 Yang 2024 Yang |
DBID | NPM AAYXX CITATION ISR 7X8 5PM DOA |
DOI | 10.7717/peerj-cs.2179 |
DatabaseName | PubMed CrossRef Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2376-5992 |
ExternalDocumentID | oai_doaj_org_article_26e370c34be346e7b9776e28ce70a6c1 A813704408 10_7717_peerj_cs_2179 39145245 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Innovation Fund for Higher Education in Gansu Province in 2022 grantid: 2022A-171 |
GroupedDBID | 3V. 53G 5VS 8FE 8FG AAFWJ ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M0N M~E NPM OK1 P62 PIMPY PQQKQ PROAC RPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c441t-3bfed33165abce2e796d6a31a5704f37ff63888f986c45e4727a8a2adb7aad873 |
IEDL.DBID | RPM |
ISSN | 2376-5992 |
IngestDate | Tue Oct 22 15:09:52 EDT 2024 Thu Aug 15 06:05:51 EDT 2024 Sat Oct 26 04:18:12 EDT 2024 Thu Oct 31 02:22:35 EDT 2024 Tue Oct 29 04:10:30 EDT 2024 Tue Oct 29 03:39:07 EDT 2024 Fri Dec 06 08:46:29 EST 2024 Sat Nov 02 12:05:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Localization algorithms Wireless sensor networks Target tracking Positioning accuracy Differential evolution algorithm |
Language | English |
License | 2024 Yang. https://creativecommons.org/licenses/by/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-3bfed33165abce2e796d6a31a5704f37ff63888f986c45e4727a8a2adb7aad873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323089/ |
PMID | 39145245 |
PQID | 3093175081 |
PQPubID | 23479 |
PageCount | e2179 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_26e370c34be346e7b9776e28ce70a6c1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11323089 proquest_miscellaneous_3093175081 gale_infotracmisc_A813704408 gale_infotracacademiconefile_A813704408 gale_incontextgauss_ISR_A813704408 crossref_primary_10_7717_peerj_cs_2179 pubmed_primary_39145245 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-31 |
PublicationDateYYYYMMDD | 2024-07-31 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Diego, USA |
PublicationTitle | PeerJ. Computer science |
PublicationTitleAlternate | PeerJ Comput Sci |
PublicationYear | 2024 |
Publisher | PeerJ. Ltd PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
References | Choi (10.7717/peerj-cs.2179/ref-4) 2021; 60 Tomic (10.7717/peerj-cs.2179/ref-15) 2019; 26 Zefu (10.7717/peerj-cs.2179/ref-19) 2023; 14 Coluccia (10.7717/peerj-cs.2179/ref-5) 2018; 17 Gebremariam (10.7717/peerj-cs.2179/ref-9) 2023; 82 Navarro (10.7717/peerj-cs.2179/ref-12) 2024; 25 Sun (10.7717/peerj-cs.2179/ref-14) 2023; 23 Zhang (10.7717/peerj-cs.2179/ref-20) 2022; 81 Cong (10.7717/peerj-cs.2179/ref-6) 2024; 128 Amjad (10.7717/peerj-cs.2179/ref-1) 2016; 16 Caceres Najarro (10.7717/peerj-cs.2179/ref-2) 2020; 24 Chen (10.7717/peerj-cs.2179/ref-3) 2020; 20 Marah (10.7717/peerj-cs.2179/ref-11) 2021; 65 Wye (10.7717/peerj-cs.2179/ref-17) 2021; 1755 Storn (10.7717/peerj-cs.2179/ref-13) 1997; 11 Dubey (10.7717/peerj-cs.2179/ref-7) 2023; 212 Xu (10.7717/peerj-cs.2179/ref-18) 2011; 59 Luomala (10.7717/peerj-cs.2179/ref-10) 2022; 210 Gebremariam (10.7717/peerj-cs.2179/ref-8) 2022; 2023 Wan (10.7717/peerj-cs.2179/ref-16) 2022; 126 |
References_xml | – volume: 82 start-page: 82 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2179/ref-9 article-title: Secure localization techniques in wireless sensor networks against routing attacks based on hybrid machine learning models publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2023.09.064 contributor: fullname: Gebremariam – volume: 212 start-page: 377 issue: 6 year: 2023 ident: 10.7717/peerj-cs.2179/ref-7 article-title: Optimal path selection using reinforcement learning based ant colony optimization algorithm in IoT-based wireless sensor networks with 5G technology publication-title: Computer Communications doi: 10.1016/j.comcom.2023.09.015 contributor: fullname: Dubey – volume: 20 start-page: 3466 issue: 12 year: 2020 ident: 10.7717/peerj-cs.2179/ref-3 article-title: A novel method for asynchronous time-of-arrival-based source localization: algorithms, performance and complexity publication-title: Sensors doi: 10.3390/s20123466 contributor: fullname: Chen – volume: 2023 start-page: 8068038 issue: 1 year: 2022 ident: 10.7717/peerj-cs.2179/ref-8 article-title: Blockchain-based secure localization against malicious nodes in IoT-based wireless sensor networks using federated learning publication-title: Wireless Communications and Mobile Computing contributor: fullname: Gebremariam – volume: 16 start-page: 2865 issue: 9 year: 2016 ident: 10.7717/peerj-cs.2179/ref-1 article-title: TinyOS-new trends, comparative views, and supported sensing applications: a review publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2016.2519924 contributor: fullname: Amjad – volume: 65 start-page: 101051 year: 2021 ident: 10.7717/peerj-cs.2179/ref-11 article-title: Model-driven round-trip engineering for TinyOS-based WSN applications publication-title: Journal of Computer Languages doi: 10.1016/j.cola.2021.101051 contributor: fullname: Marah – volume: 14 start-page: 46 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2179/ref-19 article-title: A method for UWB localization based on CNN-SVM and hybrid locating algorithm publication-title: Information doi: 10.3390/info14010046 contributor: fullname: Zefu – volume: 25 start-page: 101008 year: 2024 ident: 10.7717/peerj-cs.2179/ref-12 article-title: Real-time classification of cattle behavior using wireless sensor networks publication-title: Internet of Things doi: 10.1016/j.iot.2023.101008 contributor: fullname: Navarro – volume: 1755 start-page: 012032 issue: 1 year: 2021 ident: 10.7717/peerj-cs.2179/ref-17 article-title: Recent advancements in radio frequency based indoor localization techniques publication-title: Journal of Physics: Conference Series contributor: fullname: Wye – volume: 24 start-page: 2756 issue: 12 year: 2020 ident: 10.7717/peerj-cs.2179/ref-2 article-title: Fast localization with unknown transmit power and path-loss exponent in WSNs based on RSS measurements publication-title: IEEE Communications Letters doi: 10.1109/LCOMM.2020.3016710 contributor: fullname: Caceres Najarro – volume: 26 start-page: 64 issue: 1 year: 2019 ident: 10.7717/peerj-cs.2179/ref-15 article-title: A robust NLOS bias mitigation technique for RSS-TOA-based target localization publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2018.2879720 contributor: fullname: Tomic – volume: 81 start-page: 461 issue: 3 year: 2022 ident: 10.7717/peerj-cs.2179/ref-20 article-title: WSNs node localization algorithm based on multi-hop distance vector and error correction publication-title: Telecommunication Systems doi: 10.1007/s11235-022-00952-9 contributor: fullname: Zhang – volume: 17 start-page: 361 issue: 1 year: 2018 ident: 10.7717/peerj-cs.2179/ref-5 article-title: On the hybrid TOA/RSS range estimation in wireless sensor networks publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2017.2766628 contributor: fullname: Coluccia – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.7717/peerj-cs.2179/ref-13 article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 contributor: fullname: Storn – volume: 59 start-page: 2887 issue: 6 year: 2011 ident: 10.7717/peerj-cs.2179/ref-18 article-title: Source localization in wireless sensor networks from signal time-of-arrival measurements publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2011.2116012 contributor: fullname: Xu – volume: 128 start-page: 107463 year: 2024 ident: 10.7717/peerj-cs.2179/ref-6 article-title: Node depth representation-based evolutionary multitasking optimization for maximizing the network lifetime of wireless sensor networks publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.107463 contributor: fullname: Cong – volume: 60 start-page: 100768 issue: 4 year: 2021 ident: 10.7717/peerj-cs.2179/ref-4 article-title: A fast and efficient stochastic opposition-based learning for differential evolution in numerical optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2020.100768 contributor: fullname: Choi – volume: 23 start-page: 8426 issue: 20 year: 2023 ident: 10.7717/peerj-cs.2179/ref-14 article-title: A hybrid localization algorithm for an adaptive strategy-based distance vector-hop and improved sparrow search for wireless sensor networks publication-title: Sensors doi: 10.3390/s23208426 contributor: fullname: Sun – volume: 126 start-page: 895 issue: 1 year: 2022 ident: 10.7717/peerj-cs.2179/ref-16 article-title: Improved DV-hop localization algorithm based on weighted least squares cycle optimization in anisotropic networks publication-title: Wireless Personal Communications doi: 10.1007/s11277-022-09775-y contributor: fullname: Wan – volume: 210 start-page: 108865 year: 2022 ident: 10.7717/peerj-cs.2179/ref-10 article-title: Adaptive range-based localization algorithm based on trilateration and reference node selection for outdoor wireless sensor networks publication-title: Computer Networks doi: 10.1016/j.comnet.2022.108865 contributor: fullname: Luomala |
SSID | ssj0001511119 |
Score | 2.3150105 |
Snippet | Wireless sensor networks (WSNs) have wide applications in healthcare, environmental monitoring, and target tracking, relying on sensor nodes that are joined... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e2179 |
SubjectTerms | Algorithms Algorithms and Analysis of Algorithms Differential evolution algorithm Environmental monitoring Localization algorithms Mobile and Ubiquitous Computing Optimization Theory and Computation Positioning accuracy Sensors Target tracking Wireless sensor networks |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZQT1zYl0BBBiE4hb7Ea7gVRFWQ4ABU6s3yMm6L3kuqJA-p_77jLNWLOHDhZnnsyPaMZ75xxmNC3gTwMQjhcgFR5VypInfMFbnGelGqyOxwNPDtuzw-4V9PxenOU18pJmxMDzwu3EEpgamVZ9wB4xKUQ8AiodQe1MpKPzo-q11narwfnFRBNSbVxAGog0uA9nfuu_eIwauFERpy9f-tkXdM0jJccsf-HN0jdybgSA_HAd8nt6B-QO7OjzLQaY8-JH2KZ12j_qIdeqhNSwdrNd22pMloBYqFkHAjdqAN6ozNTLZ1oIimZ5q7opvGod5AAqrJltZNgO4DtVj4A2tq12dNe9Gfbx6Rk6PPvz4d59PTCrlH_NPnzEUIjBVSWOehBFXJIC0rrFArHpmKEfel1rHS0nMBHFGO1ba0wSlrg1bsMdmrmxqeEqpKsBAcfhDNPXqjDgAxnXDKMeaC0xl5O6-1uRwzaBj0PBJTzMAU4zuTmJKRj4kTN41S4uuhAsXBTOJg_iUOGXmd-GhSaos6xc6c2W3XmS8_f5hDXWDX9MJ2Rt5NjWKDHPV2uoqAE0rZsBYt9xctce_5BfnVLC4mkVLAWg3NtjPpBzMiMwRcGXkyis_NxFhVcFFykRG9EKzFzJeU-uJ8SP1dFAx9Rl09-x9r9ZzcLpFn40n1Ptnr2y28QIjVu5fDbroGKhUpNQ priority: 102 providerName: Directory of Open Access Journals |
Title | Wireless sensor localization based on distance optimization and assistance by mobile anchor nodes: a novel algorithm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39145245 https://www.proquest.com/docview/3093175081 https://pubmed.ncbi.nlm.nih.gov/PMC11323089 https://doaj.org/article/26e370c34be346e7b9776e28ce70a6c1 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaa7rLL3g9vXaANw3ZyEluWJe_WFs26AS2KbgV6E_Sg0wyJHdjJgP37UX4UMXbbTRAlWzJF8qNMUYR8dGBzx7kJOeQiTISIQsNMFEqs57HImW62Bi4u0_Ob5Pstvz0gaX8Wpgnat2Y5KVbrSbG8a2IrN2s77ePEplcXp_52dDaT2XRERiKWez56ezbYq4GsTaiJLxfTDUD1K7T1BPF3NjBATZ7-f7Xxnjkahkru2Z75E_KoA430uB3cU3IAxTPyuL-QgXby-ZxsfSwrjr6mNXqnZUUbS9WdtKTeYDmKBecxI3agJeqLdU_WhaOIpHua-UPXpUGdgQRUkRUtSgf1F6qx8BtWVK8WZbXc3q1fkJv52c_T87C7ViG0iH22ITM5OMailGtjIQaRpS7VLNJczJKciTxHmZQyz2RqEw4JIhwtdaydEVo7KdhLcliUBbwmVMSgwRl8IJp69EQNAOI5boRhzDgjA_Kp_9Zq02bPUOh1eKaohinK1sozJSAnnhP3jXzS66airBaqY72KU2BiZlligCUpCIPYNYVYWhAzndooIB88H5VPa1H4uJmF3tW1-vbjWh3LCLv627UD8rlrlJfIUau7Ywg4IZ8Ja9DyaNAS5c4OyO_75aI8yQerFVDuauV_LiMqQ7AVkFft8rmfGMuihMcJD4gcLKzBzIcUlIIm7Xe_6t_8f9e35GGMnGr3po_I4bbawTsEVVszJiM5_zomD07OLq-ux83WxLiRq78AhCwI |
link.rule.ids | 230,315,728,781,785,865,886,2103,27929,27930,33379,33750,53796,53798 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGeIAXxjcZAwxC8JS2iePY4W1MTB2sE4JN2pvlj0tX1CZV0iLx33POx9SIN94in53YPt_dz87dmZD3DmzuODchh1yEiRBRaJiJQonlPBY5083RwOwinV4lX6_59R5J-1iYxmnfmsWoWK5GxeKm8a1cr-y49xMbf5-d-NvR2URm4zvkLmciS3d26W10sFcEWZtSEz8vxmuA6ldo6xEi8GxggppM_f_q4x2DNHSW3LE-pw_Jgw420uO2e4_IHhSPyUF_JQPtJPQJ2XhvVux_TWvcn5YVbWxVF2tJvclyFB-cR43YgJaoMVY9WReOIpbuaeYPXZUGtQYSUElWtCgd1J-oxoffsKR6OS-rxeZm9ZRcnX65PJmG3cUKoUX0swmZycExFqVcGwsx4Ay6VLNIczFJcibyHKVSyjyTqU04JIhxtNSxdkZo7aRgz8h-URbwglARgwZn8IVo7HEvagAQ0XEjDGPGGRmQD_1cq3WbP0PhvsMzRTVMUbZWnikB-ew5cVvJp71uCspqrjrmqzgFJiaWJQZYkoIwiF5TiKUFMdGpjQLyzvNR-cQWhfecmettXauznz_UsYywqb9fOyAfu0p5iRy1ugtEwAH5XFiDmkeDmih5dkB-2y8X5UneXa2Aclsr_3sZcRnCrYA8b5fP7cBYFiU8TnhA5GBhDUY-pKAcNIm_-3V_-P9N35B708vZuTo_u_j2ktyPkWvtSfUR2d9UW3iFEGtjXjfy9BdvKSvs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgLb0qggEEITtls4jh2uJXCqgVaVUCl3iw_JttFu8kq2UXi3zPOo9qIG7fIY0d25vWNMx4T8taBLRznJuRQiDAVIg4NM3EosZ0nomC63Ro4PcuOL9Ivl_yyz6ps-rTK0prFpFyuJuXiqs2tXK9sNOSJReenR_52dDaVebR2RXST3OJM5HInUu9OCHtjkHdlNXEKIloD1L9C20wQhecjN9RW6__XJu84pXHC5I4Hmt0nd3voSA-7KT4gN6B8SO4N1zLQXksfkY3PaMU1NLTBGLWqaeuv-vOW1LstR_HBeeSIA2iFVmM1kHXpKOLpgWb-0FVl0HIgAQ1lTcvKQfOBanz4DUuql_OqXmyuVo_Jxezzz6PjsL9cIbSIgDYhMwU4xuKMa2MhAZFnLtMs1lxM04KJokDNlLLIZWZTDiniHC11op0RWjsp2BOyV1YlPCVUJKDBGXwhOnyMRw0AojpuhGHMOCMD8m741mrd1dBQGHt4pqiWKco2yjMlIB89J647-dLXbUNVz1UvACrJgImpZakBlmYgDCLYDBJpQUx1ZuOAvPF8VL64RemzZ-Z62zTq5Md3dShjHOrv2A7I-75TUSFHre4PI-CCfD2sUc-DUU_UPjsivx7ERXmST1krodo2yv9iRmyGkCsg-534XC-M5XHKk5QHRI4Ea7TyMQV1oS3-Pcj-s_8f-orcPv80U99Ozr4-J3cSZFq3WX1A9jb1Fl4gytqYl606_QWS0yz_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wireless+sensor+localization+based+on+distance+optimization+and+assistance+by+mobile+anchor+nodes%3A+a+novel+algorithm&rft.jtitle=PeerJ.+Computer+science&rft.au=Yang%2C+Hui&rft.date=2024-07-31&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2179&rft_id=info:doi/10.7717%2Fpeerj-cs.2179&rft.externalDocID=A813704408 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |