Wireless sensor localization based on distance optimization and assistance by mobile anchor nodes: a novel algorithm

Wireless sensor networks (WSNs) have wide applications in healthcare, environmental monitoring, and target tracking, relying on sensor nodes that are joined cooperatively. The research investigates localization algorithms for both target and node in WSNs to enhance accuracy. An innovative localizati...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 10; p. e2179
Main Author Yang, Hui
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 31.07.2024
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wireless sensor networks (WSNs) have wide applications in healthcare, environmental monitoring, and target tracking, relying on sensor nodes that are joined cooperatively. The research investigates localization algorithms for both target and node in WSNs to enhance accuracy. An innovative localization algorithm characterized as an asynchronous time-of-arrival (TOA) target is proposed by implementing a differential evolution algorithm. Unlike available approaches, the proposed algorithm employs the least squares criterion to represent signal-sending time as a function of the target position. The target node's coordinates are estimated by utilizing a differential evolution algorithm with reverse learning and adaptive redirection. A hybrid received signal strength (RSS)-TOA target localization algorithm is introduced, addressing the challenge of unknown transmission parameters. This algorithm simultaneously estimates transmitted power, path loss index, and target position by employing the RSS and TOA measurements. These proposed algorithms improve the accuracy and efficiency of wireless sensor localization, boosting performance in various WSN applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2376-5992
2376-5992
DOI:10.7717/peerj-cs.2179