User Experience Sensor for Man-Machine Interaction Modeled as an Analogy to the Tower of Hanoi

This paper presents a novel user experience optimization concept and method, named User Experience Sensor, applied within the Hybrid Intelligence System (HINT). The HINT system, defined as a combination of an extensive AI system and the possibility of attaching a human expert, is designed to be used...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 15; p. 4074
Main Authors Gardecki, Arkadiusz, Podpora, Michal, Beniak, Ryszard, Klin, Bartlomiej, Pochwała, Sławomir
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 22.07.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a novel user experience optimization concept and method, named User Experience Sensor, applied within the Hybrid Intelligence System (HINT). The HINT system, defined as a combination of an extensive AI system and the possibility of attaching a human expert, is designed to be used by relational agents, which may have a physical form, such as a robot, a kiosk, be embodied in an avatar, or may also exist as only software. The proposed method focuses on automatic process evaluation as a common sensor for optimization of the user experience for every process stage and the indicator for human-expert automatic session activation. This functionality is realized by the User Experience Sensor, which constitutes one of main elements of the self-optimizing interaction system. The authors present the optimization mechanism of the HINT system as an analogy to the process of building a Tower of Hanoi. The proposed sensor evaluates the user experience and measures the user/employee efficiency at every stage of a given process, offering the user to choose other forms of information, interaction, or expert support. The designed HINT system is able to learn and self-optimize, making the entire process more intuitive and easy for each and every user individually. The HINT system with the proposed sensor, implemented in a window assembly facility, successfully reduced assembly time, increased employees' satisfaction, and assembly quality. The proposed approach can be implemented in numerous man-machine interaction applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20154074