User Experience Sensor for Man-Machine Interaction Modeled as an Analogy to the Tower of Hanoi
This paper presents a novel user experience optimization concept and method, named User Experience Sensor, applied within the Hybrid Intelligence System (HINT). The HINT system, defined as a combination of an extensive AI system and the possibility of attaching a human expert, is designed to be used...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 15; p. 4074 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
22.07.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a novel user experience optimization concept and method, named User Experience Sensor, applied within the Hybrid Intelligence System (HINT). The HINT system, defined as a combination of an extensive AI system and the possibility of attaching a human expert, is designed to be used by relational agents, which may have a physical form, such as a robot, a kiosk, be embodied in an avatar, or may also exist as only software. The proposed method focuses on automatic process evaluation as a common sensor for optimization of the user experience for every process stage and the indicator for human-expert automatic session activation. This functionality is realized by the User Experience Sensor, which constitutes one of main elements of the self-optimizing interaction system. The authors present the optimization mechanism of the HINT system as an analogy to the process of building a Tower of Hanoi. The proposed sensor evaluates the user experience and measures the user/employee efficiency at every stage of a given process, offering the user to choose other forms of information, interaction, or expert support. The designed HINT system is able to learn and self-optimize, making the entire process more intuitive and easy for each and every user individually. The HINT system with the proposed sensor, implemented in a window assembly facility, successfully reduced assembly time, increased employees' satisfaction, and assembly quality. The proposed approach can be implemented in numerous man-machine interaction applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s20154074 |