Interlaminar Fracture Toughness Characterization of Laminated Composites: A Review
Interlaminar fracture toughness had been the subject of great interest for several years and is still interesting to the research community. In this article, a comprehensive analysis of fracture toughness in FRP laminates is presented. Primarily, toughness studies are undertaken on glass and carbon...
Saved in:
Published in | Polymer reviews Vol. 60; no. 3; pp. 542 - 593 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.07.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Interlaminar fracture toughness had been the subject of great interest for several years and is still interesting to the research community. In this article, a comprehensive analysis of fracture toughness in FRP laminates is presented. Primarily, toughness studies are undertaken on glass and carbon fiber reinforced composites under mode-I and mode-II loading conditions. The fracture behavior and its failure pattern depend on a number of parameters: fiber sizing/coating, matrix modification, insert film, fiber volume fraction, stacking sequence, specimen geometry, loading rate and temperature change. In fact, a state-of-the-art process enables increasing fracture resistance with "matrix toughening by carbon nanotubes (CNT) inclusion". It enables production of materials having ultra-high strength and low weight. The present study has highlighted the available techniques of CNT incorporation: mechanical mixing, grafting and interleaving. Other aspects, such as the dispersion level, matrix viscosity, fiber surface roughness, loading weight %, bonding strength with epoxy, height and density of grown CNT, energy absorption mechanism during delamination, etc., have been examined as well. Although a clear correlation of all these parameters with fracture toughness is hard to establish, there is growing understanding of the surface-grown CNTs and interleaving processes as they ensure significant increase in fracture toughness. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1558-3724 1558-3716 |
DOI: | 10.1080/15583724.2019.1677708 |