Low-Cost, High-Performance Fiber Optic Fabry–Perot Sensor for Ultrasonic Wave Detection

This study describes a novel fiber optic extrinsic Fabry–Perot interferometric (EFPI) ultrasonic sensor comprising a low-cost and high-performance silicon diaphragm. A vibrating diaphragm, 5 μm thick, was fabricated by using the Microelectromechanical Systems (MEMS) processing technology on a silico...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 2; p. 406
Main Authors Li, Haoyong, Li, Delin, Xiong, Chaoyu, Si, Wenrong, Fu, Chenzhao, Yuan, Peng, Yu, Yiting
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 19.01.2019
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study describes a novel fiber optic extrinsic Fabry–Perot interferometric (EFPI) ultrasonic sensor comprising a low-cost and high-performance silicon diaphragm. A vibrating diaphragm, 5 μm thick, was fabricated by using the Microelectromechanical Systems (MEMS) processing technology on a silicon-on-insulator (SOI) wafer. The Fabry–Perot (FP) cavity length was solely determined during the manufacturing process of the diaphragm by defining a specific stepped hole on the handling layer of the SOI wafer, which made the assembly of the sensor easier. In addition, the use of cheap and commercially available components and MEMS processing technology in the development of the sensing system, limited the cost of the sensor. The experimental tests showed that the minimum detectable ultrasonic pressure was 1.5 mPa/sqrt(Hz) −0.625 mPa/sqrt(Hz) between 20 kHz and 40 kHz. As a result, this sensor has the potential to successfully detect weak ultrasonic signals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s19020406