Parameter estimation of Weibull distribution for the number of days between drug administration and early onset adverse event

The Weibull distribution is applied to the number of days between the start date of drug administration and the date of occurrence of an adverse event. The tendency of occurrence of adverse events can be clarified by estimating the two- or three-parameter Weibull distribution, using the data regardi...

Full description

Saved in:
Bibliographic Details
Published inJournal of biopharmaceutical statistics Vol. 33; no. 3; pp. 386 - 399
Main Authors Ogura, Toru, Shiraishi, Chihiro
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 04.05.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Weibull distribution is applied to the number of days between the start date of drug administration and the date of occurrence of an adverse event. The tendency of occurrence of adverse events can be clarified by estimating the two- or three-parameter Weibull distribution, using the data regarding the number of days. Our purpose is to estimate the parameters of the Weibull distribution with high accuracy, even in low-reported adverse events, such as new drugs, polypharmacy and small clinical trials. Furthermore, the two-sample Kolmogorov - Smirnov test (two-sided) is used to examine whether the tendency of occurrence of adverse events is different for two Weibull distributions estimated from two drugs with similar efficacy. We used discrete data derived from FDA Adverse Event Reporting System (FAERS), as the FAERS data are presented in years, months and days without hours and minutes. Because this study focuses on early onset adverse events, data may be contained 0 days. The discreteness of the data and the fact that it may include zero make this distribution different from the general Weibull distribution, which is defined for continuous data greater than zero. We search for the optimal parameter estimation method for the Weibull distribution under these two conditions, and verify its effectiveness using Monte Carlo simulations and FAERS data. Because the results obtained from FAERS data may differ depending on data handling, we describe the of data handling technique and the sample code that can reproduce the results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1054-3406
1520-5711
DOI:10.1080/10543406.2022.2154940