Use of urinary 13,14, dihydro-15-keto-prostaglandin F2α (PGFM) concentrations to diagnose pregnancy and predict parturition in the giant panda (Ailuropoda melanolecua)

Pregnancy determination is difficult in the giant panda (Ailuropoda melanolecua), representing a challenge for ex situ conservation efforts. Research in other species experiencing pseudopregnancy indicates that urinary/fecal concentrations of 13,14, dihydro-15-keto-prostaglandin F2α (PGFM) can accur...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 5; p. e0195599
Main Authors Roberts, Beth M, Brown, Janine L, Kersey, David C, Snyder, Rebecca J, Durrant, Barbara S, Kouba, Andrew J
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pregnancy determination is difficult in the giant panda (Ailuropoda melanolecua), representing a challenge for ex situ conservation efforts. Research in other species experiencing pseudopregnancy indicates that urinary/fecal concentrations of 13,14, dihydro-15-keto-prostaglandin F2α (PGFM) can accurately determine pregnancy status. Our objective was to determine if urinary PGFM concentrations are associated with pregnancy status in the giant panda. Urinary PGFM concentrations were measured in female giant pandas (n = 4) throughout gestation (n = 6) and pseudopregnancy (n = 4) using a commercial enzyme immunoassay. Regardless of pregnancy status, PGFM excretion followed a predictable pattern: 1) baseline concentrations for 11-19 weeks following ovulation; 2) a modest, initial peak 14-36 days after the start of the secondary urinary progestagen rise; 3) a subsequent period of relatively low concentrations; and 4) a large, terminal peak at the end of the luteal phase. Pregnant profiles were distinguished by an earlier initial peak (P = 0.024), higher inter-peak concentrations (P < 0.001), and a larger terminal peak (P = 0.003) compared to pseudopregnancy profiles. Parturition occurred 23 to 25 days from the initial PGFM surge and within 24 hours of the start of the terminal increase. These pattern differences indicate that urinary PGFM monitoring can be used to predict pregnancy status and time parturition in the giant panda. Furthermore, this is the only species known to exhibit a significant PGFM increase during pseudopregnancy, suggesting a unique physiological mechanism for regulating the end of the luteal phase in the giant panda.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Department of Wildlife, Fisheries, and Aquaculture, College of Forestry, Mississippi State University, Starkville, Mississippi, United States of America
Current address: Department of Conservation and Science, Oklahoma City Zoo and Botanical Garden, Oklahoma City, Oklahoma, United States of America
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0195599