Genetic and functional characterization of inherited complex chromosomal rearrangements in a family with multisystem anomalies

Complex chromosomal rearrangements (CCRs) are rare structural variants involving 3 or more chromosomal breakpoints. Most de novo-reported CCRs pose challenges for diagnosis and management. They often require karyotyping, fluorescence in situ hybridization, and chromosomal microarray analysis (CMA) f...

Full description

Saved in:
Bibliographic Details
Published inGenetics in Medicine Open Vol. 3; p. 103423
Main Authors Fang, He, Eacker, Stephen M., Wu, Yu, Neufeld-Kaiser, Whitney, Laurino, Mercy, Keel, Siobán, Horwitz, Marshall S., Liu, Yajuan J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Complex chromosomal rearrangements (CCRs) are rare structural variants involving 3 or more chromosomal breakpoints. Most de novo-reported CCRs pose challenges for diagnosis and management. They often require karyotyping, fluorescence in situ hybridization, and chromosomal microarray analysis (CMA) for clinical diagnosis because of the limitations of each method. Here, we report an inherited, exceptionally complex CCR involving 4 chromosomes and 13 breakpoints in a family with multisystem anomalies. We evaluated the CCRs using karyotyping, fluorescence in situ hybridization, CMA, and 2 emerging genomic technologies: high-throughput chromosome conformation capture sequencing aka genomic proximity mapping and optical genome mapping. We also performed functional studies using transcriptome and methylome analyses. The proband, who had intellectual disability and immune deficiency, shared CCRs with her unaffected mother involving chromosomes 1, 7, and 11 by karyotyping. However, CMA revealed a duplication and 3 deletions in the proband, in contrast to her mother’s balanced genome. High-throughput chromosome conformation capture sequencing aka genomic proximity mapping and optical genome mapping detected the CCRs and copy-number alterations but also uncovered additional breakpoints at high resolution, including an insertion in 4p and 2 cryptic rearrangements at 7p. Transcriptome and methylome analyses identified likely biological pathways associated with the proband’s phenotypes. Combining cytogenetic and genomic methods provided comprehensive characterization and defined the breakpoints at high resolution in both proband and mother. This underscores the value of novel cytogenetic and genomic techniques in deciphering complex genome rearrangements and the significance of integrative genomic analysis and functional characterization in understanding clinical phenotypes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2949-7744
2949-7744
DOI:10.1016/j.gimo.2025.103423