The RING Finger Protein RNF4, a Co-regulator of Transcription, Interacts with the TRPS1 Transcription Factor

The TRPS1 gene encodes a repressor of GATA-mediated transcription. Mutations in this gene cause the tricho-rhino-phalangeal syndromes, but the affected pathways are unknown. In a yeast two-hybrid screen with the C-terminal part of the murine Trps1 protein as bait, we obtained three yeast clones enco...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 278; no. 40; pp. 38780 - 38785
Main Authors Kaiser, Frank J., Möröy, Tarik, Chang, Glenn T.G., Horsthemke, Bernhard, Lüdecke, Hermann-Josef
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.10.2003
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The TRPS1 gene encodes a repressor of GATA-mediated transcription. Mutations in this gene cause the tricho-rhino-phalangeal syndromes, but the affected pathways are unknown. In a yeast two-hybrid screen with the C-terminal part of the murine Trps1 protein as bait, we obtained three yeast clones encoding two overlapping fragments of the 194 amino acids RING finger protein 4 (Rnf4). The overlap narrows down the Trps1-binding region within Rnf4 to amino acids 6-65. This region in Rnf4 is also known to interact with several proteins including steroid receptors. By using truncated Trps1 constructs, the Rnf4-binding region in Trps1 could be assigned to amino acids 985-1184 of 1281. This 200 amino acid region of Trps1 does not contain any predicted protein-protein interacting motif. Complex formation between the human proteins TRPS1 and RNF4 was verified by co-immunoprecipitation from transfected and native mammalian cells. Confocal laser-scanning microscopy revealed that the endogenous proteins are located in distinct structures of the nucleus. Using a luciferase reporter assay, we could demonstrate that the repressional function of TRPS1 is inhibited by RNF4. This finding suggests that RNF4 is a negative regulator of TRPS1 activity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M306259200