Cryogenic-temperature fracture toughness analysis of non-equi-atomic V10Cr10Fe45Co20Ni15 high-entropy alloy
Representative face-centered-cubic (FCC) high-entropy alloys (HEAs) or medium-entropy alloys (MEAs), e.g., equi-atomic CoCrFeMnNi or CrCoNi alloys, have drawn many attentions due to the excellent damage-tolerance at cryogenic temperature. The investigation of fracture toughness at 77 K is basically...
Saved in:
Published in | Journal of alloys and compounds Vol. 809; p. 151864 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.11.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Representative face-centered-cubic (FCC) high-entropy alloys (HEAs) or medium-entropy alloys (MEAs), e.g., equi-atomic CoCrFeMnNi or CrCoNi alloys, have drawn many attentions due to the excellent damage-tolerance at cryogenic temperature. The investigation of fracture toughness at 77 K is basically required for the reliable evaluation of high-performance alloys used for cryogenic applications; however, it has been rarely carried out for the non-equi-atomic FCC HEAs yet. In this study, tensile and fracture toughness tests were conducted on the non-equi-atomic V10Cr10Fe45Co20Ni15 alloy, and the results were compared with those of the equi-atomic CoCrFeMnNi and CrCoNi alloys. The present alloy shows a good damage tolerance at cryogenic temperature with tensile strength of 1 GPa and elongation of ∼60%. The KJIc fracture toughness values are 219 and 232 MPa m1/2 at 298 and 77 K, respectively, showing the increase in toughness with decreasing temperature. This increase results from the absence of twins at 298 K and the increased propensity to twin formation at 77 K, which is well confirmed by the variation of stacking fault energies (SFEs) by using Ab-initio calculations. The mechanical properties of the present alloy are actually similar or slightly lower than those of the other CoNiCr or FeMnCoNiCr alloy; instead, this study provides that neither composition nor certain elements are the most important factors dictating damage-tolerance of HEAs or MEAs.
[Display omitted]
•The increase in fracture toughness with decreasing temperature for the non-equi-atomic HEA is achieved for the first time.•The SFE decreases in the order of the V10Cr10Fe45Co20Ni15, CrMnFeCoNi, and CrCoNi alloys.•Increase in twins acts as a key parameter contributing to the relief of detrimental cryogenic-temperature effects.•Neither composition nor certain elements are the most important factors dictating damage-tolerance of HEAs or MEAs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2019.151864 |