Transformation of Myeloid Leukemia Cells to Cytokine Independence by Bcr-Abl Is Suppressed by Kinase-defective Hck
Bcr-Abl is the constitutively active protein-tyrosine kinase expressed as a result of the Philadelphia translocation in chronic myelogenous leukemia. Bcr-Abl is coupled to many of the same signaling pathways normally regulated by hematopoietic cytokines. Recent work shows that Hck, a member of the S...
Saved in:
Published in | The Journal of biological chemistry Vol. 275; no. 24; pp. 18581 - 18585 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
16.06.2000
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bcr-Abl is the constitutively active protein-tyrosine kinase expressed as a result of the Philadelphia translocation in chronic myelogenous leukemia. Bcr-Abl is coupled to many of the same signaling pathways normally regulated by hematopoietic cytokines. Recent work shows that Hck, a member of the Src tyrosine kinase family with myeloid-restricted expression, associates with and is activated by Bcr-Abl. Here we investigated the mechanism of Hck interaction with Bcr-Abl and the requirement for Hck activation in Bcr-Abl transformation signaling. Binding studies demonstrated that the Hck SH3 and SH2 domains are sufficient for interaction with Bcr-Ablin vitro. Hck binding localizes to the Abl SH2, SH3, and kinase domains as well as the distal portion of the C-terminal tail. To address the requirement for endogenous Src family kinase activation in Bcr-Abl signaling, a kinase-defective mutant of Hck was stably expressed in the cytokine-dependent myeloid leukemia cell line DAGM. Kinase-defective Hck dramatically suppressed Bcr-Abl-induced outgrowth of these cells in the absence of cytokine compared with a control cell line expressing β-galactosidase. In contrast, kinase-defective Hck did not affect cell proliferation in response to interleukin-3, suggesting that the effect is specific for Bcr-Abl. These data show that Hck interacts with Bcr-Abl through a complex mechanism involving kinase-dependent and -independent components and that interaction with Hck or other Src family members is essential for transformation signaling by Bcr-Abl. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.C000126200 |