Eosinophil-derived IL-10 supports chronic nematode infection

Eosinophilia is a feature of the host immune response that distinguishes parasitic worms from other pathogens, yet a discrete function for eosinophils in worm infection has been elusive. The aim of this study was to clarify the mechanism(s) underlying the striking and unexpected observation that eos...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 193; no. 8; pp. 4178 - 4187
Main Authors Huang, Lu, Gebreselassie, Nebiat G, Gagliardo, Lucille F, Ruyechan, Maura C, Lee, Nancy A, Lee, James J, Appleton, Judith A
Format Journal Article
LanguageEnglish
Published United States 15.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Eosinophilia is a feature of the host immune response that distinguishes parasitic worms from other pathogens, yet a discrete function for eosinophils in worm infection has been elusive. The aim of this study was to clarify the mechanism(s) underlying the striking and unexpected observation that eosinophils protect intracellular, muscle-stage Trichinella spiralis larvae against NO-mediated killing. Our findings indicate that eosinophils are specifically recruited to sites of infection at the earliest stage of muscle infection, consistent with a local response to injury. Early recruitment is essential for larval survival. By producing IL-10 at the initiation of infection, eosinophils expand IL-10(+) myeloid dendritic cells and CD4(+) IL-10(+) T lymphocytes that inhibit inducible NO synthase (iNOS) expression and protect intracellular larvae. The results document a novel immunoregulatory function of eosinophils in helminth infection, in which eosinophil-derived IL-10 drives immune responses that eventually limit local NO production. In this way, the parasite co-opts an immune response in a way that enhances its own survival.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1400852