Changes in Bioactive Constituents in Black Rice Metabolites Under Different Processing Treatments
In this study, liquid chromatography–mass spectrometry (LC-MS) was employed to conduct untargeted metabolomics analysis on black rice (BR), milled black rice (MBR), wet germinated black rice (WBR), and high-temperature and high-pressure-treated WBR (HTP-WBR). A total of 6988 positive ions and 7099 n...
Saved in:
Published in | Foods Vol. 14; no. 9; p. 1630 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
05.05.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, liquid chromatography–mass spectrometry (LC-MS) was employed to conduct untargeted metabolomics analysis on black rice (BR), milled black rice (MBR), wet germinated black rice (WBR), and high-temperature and high-pressure-treated WBR (HTP-WBR). A total of 6988 positive ions and 7099 negative ions (multiple difference ≥1.2 or ≤0.8333, p < 0.05, and variable importance in projection ≥1) were isolated, and 98 and 100 differential metabolic pathways were identified between the different samples in the positive and negative ion modes, respectively. Distinctive variations in the metabolic compositions of BR, MBR, WBR, and HTP-WBR were observed. Flavonoids, fatty acids, lipids, phenylpropanoids, polyketides, benzenoids, and organooxygen were the dominant differential metabolites. Milling removed the majority of bran-associated bioactive components such as phenolic acids, anthocyanins, micronutrients, fatty acids, antioxidants, and dietary fiber. The germination process significantly reduced the number of flavonoids, polyketides, and lipid-related metabolites, while enzymatic activation notably increased the number of organic acids and amino acids. HTP treatment synergistically enhanced the content of heat-stable flavonoids and polyketides, while simultaneously promoting fatty acid β-oxidation. These findings establish novel theoretical foundations for optimizing processing methodologies and advancing functional characterization in black rice product development. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods14091630 |