Treatment with TNF-α inhibitor rectifies M1 macrophage polarization from blood CD14+ monocytes in patients with psoriasis independent of STAT1 and IRF-1 activation

Psoriasis is a systemic inflammatory disease with dramatic responses to TNF-α inhibitors. TNF-α is mainly produced by macrophages. However, how macrophage polarization contributes to psoriasis remains unknown. We aimed to investigate the molecular mechanisms of macrophage polarization in psoriasis....

Full description

Saved in:
Bibliographic Details
Published inJournal of dermatological science Vol. 91; no. 3; pp. 276 - 284
Main Authors Lin, Shang-Hung, Chuang, Hung-Yi, Ho, Ji-Chen, Lee, Chih-Hung, Hsiao, Chang-Chun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Psoriasis is a systemic inflammatory disease with dramatic responses to TNF-α inhibitors. TNF-α is mainly produced by macrophages. However, how macrophage polarization contributes to psoriasis remains unknown. We aimed to investigate the molecular mechanisms of macrophage polarization in psoriasis. 8 patients with moderate to severe psoriasis (Male/Female: 4/4, average age: 47.9 years old) and 8 healthy controls (Male/Female: 4/4, average age: 49.3 years old) were recruited. Their peripheral CD14+ monocytes were isolated with magnetic beads and then were differentiated into macrophages. The differential macrophage polarization was compared among normal controls, psoriatic patients before and after TNF-α inhibitors. The U937 cells were used to investigate the mechanisms by which TNF-α altered the macrophage polarization. The ratio of M1 to M2a macrophage polarization was higher in psoriatic patients comparing with that in controls. The decreasing M1/M2a ratio was parallel to decreasing PASI severity score after adalimumab treatment. Consistently, TNF-α blockage decreased M1/M2a ratio in U937 cells. The induction of STAT1 and IRF-1 in polarized U937 M1 cells was inhibited by TNF-α inhibitor. However, STAT1 and/or IRF-1 interference could not resume M1 polarization. In skin, the increased M1 and M2 infiltration in lesions returned to baseline after successful treatment with TNF-α inhibitor. Increased M1 polarization is associated with higher disease severity in psoriasis, resuming to baseline after successful treatment by TNF-α inhibitors. TNF-α blockage inhibits M1 polarization through STAT1- and IRF-1-independent pathways. Macrophage polarization may contribute to disease progression in psoriasis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0923-1811
1873-569X
DOI:10.1016/j.jdermsci.2018.05.009