Nematic liquid crystals on spherical surfaces: control of defect configurations by temperature, density, and rod shape
Recent experiments have shown that defect conformations in spherical nematic liquid crystals can be controlled through variations of temperature, shell thickness, and other environmental parameters. These modifications can be understood as a result of the induced changes in the effective elastic con...
Saved in:
Published in | Physical review. E, Statistical, nonlinear, and soft matter physics Vol. 86; no. 1 Pt 1; p. 011709 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
23.07.2012
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Recent experiments have shown that defect conformations in spherical nematic liquid crystals can be controlled through variations of temperature, shell thickness, and other environmental parameters. These modifications can be understood as a result of the induced changes in the effective elastic constants of the system. To characterize the relation between defect conformations and elastic anisotropy, we carry out Monte Carlo simulations of a nematic on a spherical surface. As the anisotropy is increased, the defects flow from a tetrahedral arrangement to two coalescing pairs and then to a great circle configuration. We also analyze this flow using a variational method based on harmonic configurations. |
---|---|
ISSN: | 1550-2376 |
DOI: | 10.1103/physreve.86.011709 |