The effect of an acute increase in central blood volume on the response of cerebral blood flow to acute hypotension

The purpose of the present study was to examine whether the response of cerebral blood flow to an acute change in perfusion pressure is modified by an acute increase in central blood volume. Nine young, healthy subjects voluntarily participated in this study. To measure dynamic cerebral autoregulati...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 119; no. 5; pp. 527 - 533
Main Authors Ogoh, Shigehiko, Hirasawa, Ai, Sugawara, Jun, Nakahara, Hidehiro, Ueda, Shinya, Shoemaker, J Kevin, Miyamoto, Tadayoshi
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The purpose of the present study was to examine whether the response of cerebral blood flow to an acute change in perfusion pressure is modified by an acute increase in central blood volume. Nine young, healthy subjects voluntarily participated in this study. To measure dynamic cerebral autoregulation during normocapnic and hypercapnic (5%) conditions, the change in middle cerebral artery mean blood flow velocity was analyzed during acute hypotension caused by two methods: 1) thigh-cuff occlusion release (without change in central blood volume); and 2) during the recovery phase immediately following release of lower body negative pressure (LBNP; -50 mmHg) that initiated an acute increase in central blood volume. In the thigh-cuff occlusion release protocol, as expected, hypercapnia decreased the rate of regulation, as an index of dynamic cerebral autoregulation (0.236 ± 0.018 and 0.167 ± 0.025 s(-1), P = 0.024). Compared with the cuff-occlusion release, the acute increase in central blood volume (relative to the LBNP condition) with LBNP release attenuated dynamic cerebral autoregulation (P = 0.009). Therefore, the hypercapnia-induced attenuation of dynamic cerebral autoregulation was not observed in the LBNP release protocol (P = 0.574). These findings suggest that an acute change in systemic blood distribution modifies dynamic cerebral autoregulation during acute hypotension.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:8750-7587
1522-1601
DOI:10.1152/japplphysiol.00277.2015