Myristylation-dependent transactivation by FBR v-fos is regulated by C/EBP

Viral oncogenes are generally believed to cause transformation through disregulated mimicry of their cellular homologues. However, here we show that FBR v-fos, unlike c-fos, transcriptionally activates unique genes in retrovirally induced chondro-osseous sarcomas. We show that FBR v-fos transactivat...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 269; no. 23; pp. 16383 - 16396
Main Authors JOTTE, R. M, KAMATA, N, HOLT, J. T
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Society for Biochemistry and Molecular Biology 10.06.1994
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Viral oncogenes are generally believed to cause transformation through disregulated mimicry of their cellular homologues. However, here we show that FBR v-fos, unlike c-fos, transcriptionally activates unique genes in retrovirally induced chondro-osseous sarcomas. We show that FBR v-fos transactivates the collagen III and stromelysin promoters and that the unique transcriptional properties of transforming FBR depend upon its N-terminal myristylation and the differentiation state of the cell. Deletion or mutation of the myristylation site results in a loss of FBR v-fos transactivation in HeLa and undifferentiated 3T3-L1 preadipocyte cell lines. FBR v-fos transactivation of collagen III maps to a negative regulatory site which binds a key regulator of adipocyte differentiation, C/EBP alpha. Cotransfection of C/EBP alpha abolishes FBR v-fos transactivation of the alpha 1(III) collagen promoter. Furthermore, FBR v-fos cannot transactivate collagen III subsequent to adipocyte differentiation. We also demonstrate that collagen III transcription is reduced during adipocyte differentiation as the transcriptional activity of C/EBP alpha is concomitantly induced. Our results indicate that FBR v-fos transactivation depends upon its cotranslational myristylation and maps to a negative regulatory region which binds C/EBP alpha.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(17)34019-X