A Novel Method for LncRNA-Disease Association Prediction Based on an lncRNA-Disease Association Network
An increasing number of studies have indicated that long-non-coding RNAs (lncRNAs) play critical roles in many important biological processes. Predicting potential lncRNA-disease associations can improve our understanding of the molecular mechanisms of human diseases and aid in finding biomarkers fo...
Saved in:
Published in | IEEE/ACM transactions on computational biology and bioinformatics Vol. 16; no. 2; pp. 688 - 693 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An increasing number of studies have indicated that long-non-coding RNAs (lncRNAs) play critical roles in many important biological processes. Predicting potential lncRNA-disease associations can improve our understanding of the molecular mechanisms of human diseases and aid in finding biomarkers for disease diagnosis, treatment, and prevention. In this paper, we constructed a bipartite network based on known lncRNA-disease associations; based on this work, we proposed a novel model for inferring potential lncRNA-disease associations. Specifically, we analyzed the properties of the bipartite network and found that it closely followed a power-law distribution. Moreover, to evaluate the performance of our model, a leave-one-out cross-validation (LOOCV) framework was implemented, and the simulation results showed that our computational model significantly outperformed previous state-of-the-art models, with AUCs of 0.8825, 0.9004, and 0.9292 for known lncRNA-disease associations obtained from the LncRNADisease database, Lnc2Cancer database, and MNDR database, respectively. Thus, our approach may be an excellent addition to the biomedical research field in the future. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1545-5963 1557-9964 |
DOI: | 10.1109/TCBB.2018.2827373 |