Predominant development of mature and functional human NK cells in a novel human IL-2-producing transgenic NOG mouse

We generated a severe immunodeficient NOD/Shi-scid-IL-2Rγ(null) (NOG) mouse substrain expressing the transgenic human IL-2 gene (NOG-IL-2 Tg). Upon transfer of human cord blood-derived hematopoietic stem cells (HSCs), CD3(-)CD56(high)CD16(+/-) cells developed unexpectedly, predominantly in the NOG-I...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 194; no. 7; pp. 3513 - 3525
Main Authors Katano, Ikumi, Takahashi, Takeshi, Ito, Ryoji, Kamisako, Tsutomu, Mizusawa, Takuma, Ka, Yuyo, Ogura, Tomoyuki, Suemizu, Hiroshi, Kawakami, Yutaka, Ito, Mamoru
Format Journal Article
LanguageEnglish
Published United States 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We generated a severe immunodeficient NOD/Shi-scid-IL-2Rγ(null) (NOG) mouse substrain expressing the transgenic human IL-2 gene (NOG-IL-2 Tg). Upon transfer of human cord blood-derived hematopoietic stem cells (HSCs), CD3(-)CD56(high)CD16(+/-) cells developed unexpectedly, predominantly in the NOG-IL-2 Tg (hu-HSC NOG-IL-2 Tg). These cells expressed various NK receptors, including NKp30, NKp44, NKp46, NKG2D, and CD94, as well as a diverse set of killer cell Ig-like receptor molecules at levels comparable to normal human NK cells from the peripheral blood, which is evidence of their maturity. They produced levels of granzyme A as high as in human peripheral blood-derived NK cells, and a considerable amount of perforin protein was detected in the plasma. Human NK cells in hu-HSC NOG-IL-2 Tg produced IFN-γ upon stimulation, and IL-2, IL-15, or IL-12 treatment augmented the in vitro cytotoxicity. Inoculation of K562 leukemia cells into hu-HSC NOG-IL-2 Tg caused complete rejection of the tumor cells, whereas inoculation into hu-HSC NOG fully reconstituted with human B, T, and some NK cells did not. Moreover, when a CCR4(+) Hodgkin's lymphoma cell line was inoculated s.c. into hu-HSC NOG-IL-2 Tg, the tumor growth was significantly suppressed by treatment with a therapeutic humanized anti-CCR4 Ab (mogamulizumab), suggesting that the human NK cells in the mice exerted active Ab-dependent cellular cytotoxicity in vivo. Taken together, these data suggest that the new NOG-IL-2 Tg strain is a unique model that can be used to investigate the biological and pathological functions of human NK cells in vivo.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1401323