Brain gene expression, metabolism, and bioenergetics: interrelationships in murine models of cerebral and noncerebral malaria

Malaria infection can cause cerebral symptoms without parasite invasion of brain tissue. We examined the relationships between brain biochemistry, bioenergetics, and gene expression in murine models of cerebral (Plasmodium berghei ANKA) and noncerebral (P. berghei K173) malaria using multinuclear NM...

Full description

Saved in:
Bibliographic Details
Published inThe FASEB journal Vol. 18; no. 3; p. 499
Main Authors Rae, Caroline, McQuillan, James A, Parekh, Sapan B, Bubb, William A, Weiser, Silvia, Balcar, Vladimir J, Hansen, Anna M, Ball, Helen J, Hunt, Nicholas H
Format Journal Article
LanguageEnglish
Published United States 01.03.2004
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Malaria infection can cause cerebral symptoms without parasite invasion of brain tissue. We examined the relationships between brain biochemistry, bioenergetics, and gene expression in murine models of cerebral (Plasmodium berghei ANKA) and noncerebral (P. berghei K173) malaria using multinuclear NMR spectroscopy, neuropharmacological approaches, and real-time RT-PCR. In cerebral malaria caused by P. berghei ANKA infection, we found biochemical changes consistent with increased glutamatergic activity and decreased flux through the Krebs cycle, followed by increased production of the hypoxia markers lactate and alanine. This was accompanied by compromised brain bioenergetics. There were few significant changes in expression of mRNA for metabolic enzymes or transporters or in the rate of transport of glutamate or glucose. However, in keeping with a role for endogenous cytokines in malaria cerebral pathology, there was significant up-regulation of mRNAs for TNF-alpha, interferon-gamma, and lymphotoxin. These changes are consistent with a state of cytopathic hypoxia. By contrast, in P. berghei K173 infection the brain showed increased metabolic rate, with no deleterious effect on bioenergetics. This was accompanied by mild up-regulation of expression of metabolic enzymes. These changes are consistent with benign hypermetabolism whose cause remains a subject of speculation.
ISSN:1530-6860
DOI:10.1096/fj.03-0543com