Plant Stanol Esters Affect Serum Cholesterol Concentrations of Hypercholesterolemic Men and Women in a Dose-dependent Manner

The effect of plant stanol ester on serum cholesterol is dose-dependent. However, it is not clear what the dose is beyond which no additional benefit can be obtained. Therefore, we determined the dose-response relationship for serum cholesterol with different doses of plant stanol ester in hyperchol...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of nutrition Vol. 130; no. 4; pp. 767 - 776
Main Authors Hallikainen, Maarit A., Sarkkinen, Essi S., Uusitupa, Matti I.J.
Format Journal Article
LanguageEnglish
Published Bethesda, MD Elsevier Inc 01.04.2000
American Society for Nutritional Sciences
American Institute of Nutrition
Subjects
men
apo
E
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effect of plant stanol ester on serum cholesterol is dose-dependent. However, it is not clear what the dose is beyond which no additional benefit can be obtained. Therefore, we determined the dose-response relationship for serum cholesterol with different doses of plant stanol ester in hypercholesterolemic subjects. In a single-blind design each of 22 men or women consumed five different doses of plant stanol [target (actual) intake 0 (0), 0.8 (0.8), 1.6 (1.6), 2.4 (2.3), 3.2 (3.0) g/d] added as plant stanol esters to margarine for 4 wk. The order of dose periods was randomly determined. Serum total cholesterol concentration decreased (calculated in reference to control) by 2.8% (P = 0.384), 6.8% (P < 0.001), 10.3% (P < 0.001) and 11.3% (P < 0.001) by doses from 0.8 to 3.2 g. The respective decreases for LDL cholesterol were 1.7% (P = 0.892), 5.6% (P < 0.05), 9.7% (P < 0.001) and 10.4% (P < 0.001). Although the decreases were numerically greater with 2.4 and 3.2 g doses than with the 1.6 g dose, these differences were not significant (P = 0.054–0.516). Serum plant stanols rose slightly, but significantly with the dose (P < 0.001). Apolipoprotein B concentration was decreased significantly already at the dose of 0.8 g (8.7%, P < 0.001). Apolipoprotein E genotype did not affect the lipid responses. We conclude that significant reduction of serum total and LDL cholesterol concentrations is reached with the 1.6-g stanol dose, and increasing the dose from 2.4 to 3.2 g does not provide clinically important additional effect.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ISSN:0022-3166
1541-6100
DOI:10.1093/jn/130.4.767