Active lifestyle enhances protein expression profile in subjects with Lewy body pathology

Clinical trials of the effects of physical activity have reported improvements in symptoms and quality of life in patients with Parkinson's disease (PD). Additionally, morphological brain changes after exercising were reported in PD animal models. However, these lifestyle-related changes were n...

Full description

Saved in:
Bibliographic Details
Published inDementia & neuropsychologia Vol. 15; no. 1; pp. 41 - 50
Main Authors Real, Caroline Cristiano, Suemoto, Cláudia Kimie, Binda, Karina Henrique, Grinberg, Lea Tenenholz, Pasqualucci, Carlos Augusto, Jacob, Wilson, Ferretti-Rebustini, Renata Eloah de Lucena, Nitrini, Ricardo, Leite, Renata Elaine Paraizo, de Britto, Luiz Roberto
Format Journal Article
LanguageEnglish
Portuguese
Published Brazil Associação de Neurologia Cognitiva e do Comportamento 2021
Academia Brasileira de Neurologia, Departamento de Neurologia Cognitiva e Envelhecimento
Associação Neurologia Cognitiva e do Comportamento
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Clinical trials of the effects of physical activity have reported improvements in symptoms and quality of life in patients with Parkinson's disease (PD). Additionally, morphological brain changes after exercising were reported in PD animal models. However, these lifestyle-related changes were not evaluated in postmortem brain tissue. We aimed to evaluate, by immunohistochemistry, astrocytes, tyrosine hydroxylase (TH) and structural proteins expression (neurofilaments and microtubules - MAP2) changes in postmortem brain samples of individuals with Lewy body pathology. Braak PD stage≥III samples, classified by neuropathology analysis, from The Biobank for Aging Studies were classified into active (n=12) and non-active (n=12) groups, according to physical activity lifestyle, and paired by age, sex and Braak staging. Substantia nigra and basal ganglia were evaluated. Groups were not different in terms of age or gender and had similar PD neuropathological burden (p=1.00). We observed higher TH expression in the active group in the substantia nigra and the basal ganglia (p=0.04). Astrocytes was greater in the non-active subjects in the midbrain (p=0.03) and basal ganglia (p=0.0004). MAP2 levels were higher for non-active participants in the basal ganglia (p=0.003) and similar between groups in the substantia nigra (p=0.46). Neurofilament levels for non-active participants were higher in the substantia nigra (p=0.006) but not in the basal ganglia (p=0.24). Active lifestyle seems to promote positive effects on brain by maintaining dopamine synthesis and structural protein expression in the nigrostriatal system and decrease astrogliosis in subjects with the same PD neuropathology burden.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Disclosure: The authors report no conflicts of interest.
Authors’ contribution. CCR: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Visualization, and Writing – original draft; CKS: Conceptualization, Formal analysis, Resources, Visualization, and Writing – review; KHB: Formal analysis, Investigation, and Writing – review; LTG: Resources, and Writing – review; CAP: Resources, and Writing – review; WJF: Resources, and Writing – review; RELFR: Resources, and Writing – review; RN: Resources, and Writing – review; REPL: Conceptualization, Resources, and Writing – review; Luiz R Britto: Conceptualization, Funding acquisition, Supervision, Resources, and Writing – review.
ISSN:1980-5764
1980-5764
DOI:10.1590/1980-57642021dn15-010004