Mechanisms mediating propofol protection of pulmonary epithelial cells against lipopolysaccharide-induced cell death

Summary Propofol (2,6‐diisopropylphenol) is an anaesthetic agent with anti‐oxidant properties. The aim of the present study was to determine whether propofol can protect pulmonary epithelial (A549) cells against lipopolysaccharide (LPS)‐induced cell death and, if so, the mechanisms involved. The eff...

Full description

Saved in:
Bibliographic Details
Published inClinical and experimental pharmacology & physiology Vol. 39; no. 5; pp. 447 - 453
Main Authors Gu, Xiaoxia, Lu, Yan, Chen, Ji, He, Huijuan, Li, Peng, Yang, Teng, Li, Longxuan, Liu, Gang, Chen, Yanfang, Zhang, Liangqing
Format Journal Article
LanguageEnglish
Published Australia Blackwell Publishing Ltd 01.05.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary Propofol (2,6‐diisopropylphenol) is an anaesthetic agent with anti‐oxidant properties. The aim of the present study was to determine whether propofol can protect pulmonary epithelial (A549) cells against lipopolysaccharide (LPS)‐induced cell death and, if so, the mechanisms involved. The effects of LPS alone and in combination with propofol on A549 cell death were investigated. Cell viability was determined using the colourimetric 3‐(4,5‐dimethyl‐2 thiazoyl)‐2,5‐diphenyl‐2H‐tetrazolium bromide (MTT) assay. Apoptotic A549 cells were detected by flow cytometry, as propidium iodide‐negative and annexin‐V‐positive cells, and terminal deoxyribonucleotidyl transferase‐mediated dUTP–digoxigenin nick end‐labelling (TUNEL). Mitochondrial membrane potential (MMP), caspase 9 activity, Ca2+ concentrations and reactive oxygen species (ROS) were analysed by immunofluorescent methods. Aconitase 2 (ACO2), microtubule‐associated light chain 3 (LC3) and beclin‐1 levels were evaluated using reverse transcription–polymerase chain reaction and/or western blot analysis. Exposure of A549 cells to 1–50 μg/mL LPS for 3–24 h resulted in the concentration‐ and time‐dependent induction of cell death. Cell apoptosis accounted for approximately 77% of cell death induced by LPS. Propofol (5–150 μmol/L) concentration‐dependently inhibited LPS‐induced A549 cell death. This protective effect of propofol was accompanied by prevention of LPS‐induced mitochondrial dysfunction (reductions in MMP, ACO2 expression and ATP) and was associated with the inhibition of LPS‐induced activation of apoptotic signals (caspase 9 activity, ROS overproduction and Ca2+ accumulation). In addition, propofol blocked LPS‐induced overexpression of the autophagy‐associated proteins LC3 and beclin‐1. The data indicate that propofol protects A549 cells against LPS‐induced apoptosis, and probably autophagy, by blocking LPS‐induced activation of ROS/caspase 9 pathways and upregulation of LC3 and beclin‐1, respectively.
Bibliography:istex:81F3EF7878F2EA64AD5819EF40FF80756778B846
ark:/67375/WNG-TDQTJ369-7
ArticleID:CEP5694
Guanddong Provincial Science and Technology Committee - No. 2011B031800230; No. 2008B030301026S2011040005514
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0305-1870
1440-1681
DOI:10.1111/j.1440-1681.2012.05694.x