Pathophysiological Role of S-Nitrosylation and Transnitrosylation Depending on S-Nitrosoglutathione Levels Regulated by S-Nitrosoglutathione Reductase
Nitric oxide (NO) mediates various physiological and pathological processes, including cell proliferation, differentiation, and inflammation. Protein S-nitrosylation (SNO), a NO-mediated reversible protein modification, leads to changes in the activity and function of target proteins. Recent finding...
Saved in:
Published in | Biomolecules & therapeutics Vol. 26; no. 6; pp. 533 - 538 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Korea (South)
The Korean Society of Applied Pharmacology
01.11.2018
한국응용약물학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1976-9148 2005-4483 |
DOI | 10.4062/biomolther.2018.179 |
Cover
Loading…
Summary: | Nitric oxide (NO) mediates various physiological and pathological processes, including cell proliferation, differentiation, and inflammation. Protein S-nitrosylation (SNO), a NO-mediated reversible protein modification, leads to changes in the activity and function of target proteins. Recent findings on protein-protein transnitrosylation reactions (transfer of an NO group from one protein to another) have unveiled the mechanism of NO modulation of specific signaling pathways. The intracellular level of S-nitrosoglutathione (GSNO), a major reactive NO species, is controlled by GSNO reductase (GSNOR), a major regulator of NO/SNO signaling. Increasing number of GSNOR-related studies have shown the important role that denitrosylation plays in cellular NO/SNO homeostasis and human pathophysiology. This review introduces recent evidence of GSNO-mediated NO/SNO signaling depending on GSNOR expression or activity. In addition, the applicability of GSNOR as a target for drug therapy will be discussed in this review. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 1976-9148 2005-4483 |
DOI: | 10.4062/biomolther.2018.179 |