The Role and Regulation of the 11 Beta-Hydroxysteroid Dehydrogenase Enzyme System in Patients with Inflammatory Bowel Disease

Introduction Glucocorticoids are known to modulate a number of immunological responses including counteracting inflammation. Within tissues expressing the glucocorticoid and mineralocorticoid receptors including the colon, glucocorticoid metabolism is regulated by the isoenzymes of 11ß-hydroxysteroi...

Full description

Saved in:
Bibliographic Details
Published inDigestive diseases and sciences Vol. 62; no. 12; pp. 3385 - 3390
Main Authors Hussey, M., Holleran, G., Smith, S., Sherlock, Mark, McNamara, D.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2017
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Introduction Glucocorticoids are known to modulate a number of immunological responses including counteracting inflammation. Within tissues expressing the glucocorticoid and mineralocorticoid receptors including the colon, glucocorticoid metabolism is regulated by the isoenzymes of 11ß-hydroxysteroid dehydrogenase (11β-HSD). 11β-HSD1 acts as an oxidoreductase converting inactive cortisone into active cortisol, while 11β-HSD2 acts as a dehydrogenase converting active cortisol to inactive cortisone. Hexose-6 phosphate dehydrogenase (H6PDH) is a key regulator of 11β-HSD1 activity via its generation of NADPH. Variations in the 11β-HSD enzyme system in relation to levels of expression and regulation may have a role in IBD. The aim of this study was to investigate possible abnormalities of 11β-HSD enzyme system in the colon of patients with IBD. Methods By using quantitative real-time PCR, we investigated the transcription levels of 11β-HSD1 and 2 in colonic tissue from IBD patients and healthy controls undergoing a colonoscopy for disease assessment. Disease activity was recorded using clinical (Mayo Score/Harvey–Bradshaw Index), Biochemical (C-reactive protein), histological, and endoscopic parameters. In addition, transcription levels of H6PDH and the glucocorticoid receptor alpha (GR-α) as well as key pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, Rela (subunit for NF Kappa B)) were later examined among this group, and results were correlated with 11β-HSD2 gene expression. Results and patient demographics were expressed as a mean (and SD), and differences between IBD patients and control groups were analyzed using a Student’s t test or Mann–Whitney U test as appropriate, with a p value of ≤0.05 considered significant. Results were controlled for disease activity as outlined above. Results Results have demonstrated a significant downregulation in 11β-HSD2 expression in IBD patients compared with controls (13.8 ± 17.1 au vs. 318.4 ± 521.1 au, p  = 0.01), whereas levels of 11β-HSD1 did not appear to vary across the two groups. Among IBD patients, there was a trend toward higher 11β-HSD1 expression in inflamed tissue compared with matched non-inflamed tissue (422.1 ± 944 au vs. 102.2 ± 103.9, P  = 0.09). Levels of H6PDH and the GR-α expression did not appear to vary among active inflamed IBD tissue and controls. As a result, we examined the association between pro-inflammatory cytokines and levels of 11β-HSD2 expression. Results showed an upregulation of key pro-inflammatory cytokine mRNA expression (TNF-α, IL-1β, IL-6) during inflammation with an associated downregulation of 11β-HSD2 mRNA expression when compared to controls. Dysregulation in this pathway could have a potential role in IBD pathogenesis and may account for exogenous glucocorticoid resistance in IBD. Further work assessing the role of the 11β-HSD enzyme system in steroid-resistant subjects is warranted.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0163-2116
1573-2568
1573-2568
DOI:10.1007/s10620-017-4753-1