Numerical simulations for detailed airflow dynamics in a human nasal cavity
Abstract Nasal physiology is dependent on the physical structure of the nose. Individual aspects of the nasal cavity such as the geometry and flow rate collectively affect nasal function such as the filtration of foreign particles by bringing inspired air into contact with mucous-coated walls, humid...
Saved in:
Published in | Respiratory physiology & neurobiology Vol. 161; no. 2; pp. 125 - 135 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdarm
Elsevier B.V
30.04.2008
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract Nasal physiology is dependent on the physical structure of the nose. Individual aspects of the nasal cavity such as the geometry and flow rate collectively affect nasal function such as the filtration of foreign particles by bringing inspired air into contact with mucous-coated walls, humidifying and warming the air before it enters the lungs and the sense of smell. To better understand the physiology of the nose, this study makes use of CFD methods and post-processing techniques to present flow patterns between the left and right nasal cavities and compared the results with experimental and numerical data that are available in literature. The CFD simulation adopted a laminar steady flow for flow rates of 7.5 L/min and 15 L/min. General agreement of gross flow features were found that included high velocities in the constrictive nasal valve area region, high flow close to the septum walls, and vortex formations posterior to the nasal valve and olfactory regions. The differences in the left and right cavities were explored and the effects it had on the flow field were discussed especially in the nasal valve and middle turbinate regions. Geometrical differences were also compared with available models. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1569-9048 1878-1519 |
DOI: | 10.1016/j.resp.2008.01.012 |