Polycyanurate-Organically Modified Montmorillonite Nanocomposites: Structure-Dynamics-Properties Relationships
Polycyanurate-modified montmorrilonite (PCN-MMT) nanocomposites were synthesized by polymerization of dicyanate ester of bisphenol A in the presence of MMT dispersed by ultrasound. Techniques of IR spectroscopy, WAXD, and TEM were applied to study polymerization kinetics and structure of the nanocom...
Saved in:
Published in | Journal of macromolecular science. Physics Vol. 47; no. 3; pp. 555 - 575 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
Taylor & Francis Group
01.05.2008
Taylor & Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Polycyanurate-modified montmorrilonite (PCN-MMT) nanocomposites were synthesized by polymerization of dicyanate ester of bisphenol A in the presence of MMT dispersed by ultrasound. Techniques of IR spectroscopy, WAXD, and TEM were applied to study polymerization kinetics and structure of the nanocomposites prepared, whereas their dynamics and thermal/mechanical properties over the −30 to 420°C range were studied by using DSC, laser-interferometric creep rate spectroscopy (CRS), and dielectric relaxation spectroscopy (DRS) techniques. It was shown that a small amount of MMT additive acts as a catalyst of polymerization and results in the formation of complicated intercalated/exfoliated structures, as well as strongly modifies the dynamics in the PCN network. Pronounced dynamic heterogeneity was observed for PCN/MMT nanocomposites. Along with the main PCN glass transition, two new glass transitions, at much higher and much lower temperatures, were revealed as a consequence of constrained dynamics in matrix interfacial nanolayers and due to incomplete local cross-linking in the PCN matrix, respectively. In addition, increased sub-T
g
mobility was observed in these nanocomposites. A two-fold rise of modulus of elasticity as well as increasing thermal stability and arising microplasticity at low temperatures, promoting, obviously, improved crack resistance in a brittle PCN network, were found for the PCN-MMT nanocomposites. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0022-2348 1525-609X |
DOI: | 10.1080/00222340801955545 |