An experimental study of the gas-phase reaction between Cl atoms and trans-2-pentenal: Kinetics, products and SOA formation

The gas-phase reaction of trans-2-pentenal (T2P) with Cl atoms was studied at atmospheric pressure and room temperature. A rate coefficient of (2.56 ± 0.83) × 10-10 cm3 molecule-1 s-1 was obtained using the relative rate method and isoprene, cyclohexane and ethanol as reference compounds. The kineti...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 276; p. 130193
Main Authors Grira, Asma, Antiñolo, María, Canosa, André, Tomas, Alexandre, Jiménez, Elena, El Dib, Gisèle
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The gas-phase reaction of trans-2-pentenal (T2P) with Cl atoms was studied at atmospheric pressure and room temperature. A rate coefficient of (2.56 ± 0.83) × 10-10 cm3 molecule-1 s-1 was obtained using the relative rate method and isoprene, cyclohexane and ethanol as reference compounds. The kinetic study was carried out using a 300-L Teflon bag simulation chamber (IMT Lille Douai-France) and a 16-L Pyrex cell (UCLM-Ciudad Real-Spain), both coupled to the Fourier transform infrared (FTIR) technique. Gas-phase products and secondary organic aerosol (SOA) formation were studied at UCLM using a 16-L Pyrex cell and a 264-L quartz simulation chamber coupled to the FTIR and gas-chromatography-mass spectrometry (GC-MS) techniques. HCl, CO, and propanal were identified as products formed from the studied reaction and quantified by FTIR, the molar yield of the latter being (5.2 ± 0.2)%. Formic acid was identified as a secondary product and was quantified by FTIR with a yield of (6.2 ± 0.4)%. In addition, 2-chlorobutanal and 2–pentenoic acid were identified, but not quantified, by GC-MS as products. The SOA formation was investigated using a fast mobility particle sizer spectrometer. The observed SOA yields reached maximum values of around 7% at high particle mass concentrations. This work provides the first study of the formation of gaseous and particulate products for the reaction of Cl with T2P. A reaction mechanism is suggested to explain the formation of the observed gaseous products. The results are discussed in terms of structure-reactivity relationship, and the atmospheric implications derived from this study are commented as well. •A rate coefficient of (2.56 ± 0.83) × 10−10 cm3 molecule−1 s−1 was obtained for the reaction of T2P with Cl.•This work is the first study of the gas-phase products and the SOA formation from the reaction of T2P with Cl.•The T2P + Cl reaction may contribute to the acidity of marine atmospheres.•The T2P + Cl reaction proceeds mainly by H-abstraction of the aldehydic group and by β-addition of Cl atoms to the double bond.•Atmospheric lifetimes of T2P toward chemical removals are of few hours.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2021.130193