3DSleepNet: A Multi-Channel Bio-Signal Based Sleep Stages Classification Method Using Deep Learning
A novel multi-channel-based 3D convolutional neural network (3D-CNN) is proposed in this paper to classify sleep stages. Time domain features, frequency domain features, and time-frequency domain features are extracted from electroencephalography (EEG), electromyogram (EMG), and electrooculogram (EO...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 31; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A novel multi-channel-based 3D convolutional neural network (3D-CNN) is proposed in this paper to classify sleep stages. Time domain features, frequency domain features, and time-frequency domain features are extracted from electroencephalography (EEG), electromyogram (EMG), and electrooculogram (EOG) channels and fed into the 3D-CNN model to classify sleep stages. Intrinsic connections among different bio-signals and different frequency bands in time series and time-frequency are learned by 3D convolutional layers, while the frequency relations are learned by 2D convolutional layers. Partial dot-product attention layers help this model find the most important channels and frequency bands in different sleep stages. A long short-term memory unit is added to learn the transition rules among neighboring epochs. Classification experiments were conducted using both ISRUC-S3 datasets and ISRUC-S1, sleep-disorder datasets. The experimental results showed that the overall accuracy achieved 0.832 and the F1-score and Cohen's kappa reached 0.814 and 0.783, respectively, on ISRUC-S3, which are a competitive classification performance with the state-of-the-art baselines. The overall accuracy, F1-score, and Cohen's kappa on ISRUC-S1 achieved 0.820, 0.797, and 0.768, respectively, which also demonstrate its generality on unhealthy subjects. Further experiments were conducted on ISRUC-S3 subset to evaluate its training time. The training time on 10 subjects from ISRUC-S3 with 8549 epochs is 4493s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U2-Net architecture algorithms. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1534-4320 1558-0210 |
DOI: | 10.1109/TNSRE.2023.3309542 |