Ciliary neurotrophic factor-immunoreactivity in olfactory sensory neurons

Ciliary neurotrophic factor (CNTF) has been implicated in processes of neuroprotection, axonal regeneration and synaptogenesis in the lesioned CNS. In the olfactory system, which is characterized by particularly robust neuroplasticity throughout life, the concentration of CNTF is high even under phy...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 134; no. 4; pp. 1179 - 1194
Main Authors Langenhan, T., Sendtner, M., Holtmann, B., Carroll, P., Asan, E.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 2005
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ciliary neurotrophic factor (CNTF) has been implicated in processes of neuroprotection, axonal regeneration and synaptogenesis in the lesioned CNS. In the olfactory system, which is characterized by particularly robust neuroplasticity throughout life, the concentration of CNTF is high even under physiological conditions. In the present study, the cellular localization of CNTF-immunoreactivity was studied in the rat and mouse olfactory epithelium. In both species, individual olfactory sensory neurons (ONs) displayed intense CNTF-immunoreactivity. The number of CNTF-ir ONs varied interindividually in rats and was lower in mice than in rats. In olfactory epithelia of mice expressing β-galactosidase under control of the CNTF promoter, cells of the ON layer were immunoreactive for the reporter protein. CNTF-ir ONs were olfactory marker protein-positive and growth associated protein 43-negative. CNTF-ir ONs lacked apoptotic markers, and the number of specifically labeled ONs was apparently unchanged after light chemical lesioning of the epithelium, indicating that CNTF-immunoreactivity was not associated with ON death. Electron microscopy of CNTF-ir ON axons in innervated olfactory bulb glomeruli documented that they formed typical ON axonal synapses with target neurons. Three dimensional reconstructions of bulb pairs showed a striking similarity of the positions of glomeruli innervated by CNTF-ir ON axons in left and right bulbs of individual animals and interindividually. The number of innervated glomeruli differed interindividually in rats and was lower in mice than in rats. The results show that in rodents CNTF-immunoreactivity occurs in a subset of mature, functionally competent ONs. The localization of target glomeruli suggests that CNTF-immunoreactivity may be associated with the expression and/or activation of specific olfactory receptor proteins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2005.05.017