Functional chromopeptide nanoarchitectonics: molecular design, self-assembly and biological applications

Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life processes, such as photosynthesis. Inspired by chromoproteins, researchers integrate simple peptides and photosensitive molecular motifs to g...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 52; no. 8; pp. 2688 - 2712
Main Authors Chang, Rui, Zhao, Luyang, Xing, Ruirui, Li, Junbai, Yan, Xuehai
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 24.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life processes, such as photosynthesis. Inspired by chromoproteins, researchers integrate simple peptides and photosensitive molecular motifs to generate chromopeptides. Compared with chromoproteins, chromopeptides exhibit a relatively simple molecular structure, flexible and adjustable photophysical properties, and a capability of programmable self-assembly. Chromopeptide self-assembly has attracted great attention as the resultant high-level architectures exhibit an ingenious combination of photofunctions and biofunctions. This review systematically summarizes recent advances in chromopeptide nanoarchitectonics with particular focus on the design strategy, assembly mechanism, and structure-function relationship. Among them, the effect of peptide sequences and the variation in photophysical performance are critically emphasized. On this basis, various applications, including biomedicine and artificial photosynthesis, are discussed together with the future prospects of chromopeptide nanoarchitectonics. This review will provide insights into chromopeptide nanoarchitectonics and corresponding materials with precise designs, flexible nanostructures and versatile functions. In addition, knowledge involving chromopeptide nanoarchitectonics may aid in the development of many other kinds of supramolecular biological materials and bioengineering techniques. An overview of chromopeptide self-assembly is presented to systematically understand this kind of newly emerging peptide building block.
AbstractList Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life processes, such as photosynthesis. Inspired by chromoproteins, researchers integrate simple peptides and photosensitive molecular motifs to generate chromopeptides. Compared with chromoproteins, chromopeptides exhibit a relatively simple molecular structure, flexible and adjustable photophysical properties, and a capability of programmable self-assembly. Chromopeptide self-assembly has attracted great attention as the resultant high-level architectures exhibit an ingenious combination of photofunctions and biofunctions. This review systematically summarizes recent advances in chromopeptide nanoarchitectonics with particular focus on the design strategy, assembly mechanism, and structure-function relationship. Among them, the effect of peptide sequences and the variation in photophysical performance are critically emphasized. On this basis, various applications, including biomedicine and artificial photosynthesis, are discussed together with the future prospects of chromopeptide nanoarchitectonics. This review will provide insights into chromopeptide nanoarchitectonics and corresponding materials with precise designs, flexible nanostructures and versatile functions. In addition, knowledge involving chromopeptide nanoarchitectonics may aid in the development of many other kinds of supramolecular biological materials and bioengineering techniques. An overview of chromopeptide self-assembly is presented to systematically understand this kind of newly emerging peptide building block.
Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life processes, such as photosynthesis. Inspired by chromoproteins, researchers integrate simple peptides and photosensitive molecular motifs to generate chromopeptides. Compared with chromoproteins, chromopeptides exhibit a relatively simple molecular structure, flexible and adjustable photophysical properties, and a capability of programmable self-assembly. Chromopeptide self-assembly has attracted great attention as the resultant high-level architectures exhibit an ingenious combination of photofunctions and biofunctions. This review systematically summarizes recent advances in chromopeptide nanoarchitectonics with particular focus on the design strategy, assembly mechanism, and structure–function relationship. Among them, the effect of peptide sequences and the variation in photophysical performance are critically emphasized. On this basis, various applications, including biomedicine and artificial photosynthesis, are discussed together with the future prospects of chromopeptide nanoarchitectonics. This review will provide insights into chromopeptide nanoarchitectonics and corresponding materials with precise designs, flexible nanostructures and versatile functions. In addition, knowledge involving chromopeptide nanoarchitectonics may aid in the development of many other kinds of supramolecular biological materials and bioengineering techniques.
Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life processes, such as photosynthesis. Inspired by chromoproteins, researchers integrate simple peptides and photosensitive molecular motifs to generate chromopeptides. Compared with chromoproteins, chromopeptides exhibit a relatively simple molecular structure, flexible and adjustable photophysical properties, and a capability of programmable self-assembly. Chromopeptide self-assembly has attracted great attention as the resultant high-level architectures exhibit an ingenious combination of photofunctions and biofunctions. This review systematically summarizes recent advances in chromopeptide nanoarchitectonics with particular focus on the design strategy, assembly mechanism, and structure-function relationship. Among them, the effect of peptide sequences and the variation in photophysical performance are critically emphasized. On this basis, various applications, including biomedicine and artificial photosynthesis, are discussed together with the future prospects of chromopeptide nanoarchitectonics. This review will provide insights into chromopeptide nanoarchitectonics and corresponding materials with precise designs, flexible nanostructures and versatile functions. In addition, knowledge involving chromopeptide nanoarchitectonics may aid in the development of many other kinds of supramolecular biological materials and bioengineering techniques.Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life processes, such as photosynthesis. Inspired by chromoproteins, researchers integrate simple peptides and photosensitive molecular motifs to generate chromopeptides. Compared with chromoproteins, chromopeptides exhibit a relatively simple molecular structure, flexible and adjustable photophysical properties, and a capability of programmable self-assembly. Chromopeptide self-assembly has attracted great attention as the resultant high-level architectures exhibit an ingenious combination of photofunctions and biofunctions. This review systematically summarizes recent advances in chromopeptide nanoarchitectonics with particular focus on the design strategy, assembly mechanism, and structure-function relationship. Among them, the effect of peptide sequences and the variation in photophysical performance are critically emphasized. On this basis, various applications, including biomedicine and artificial photosynthesis, are discussed together with the future prospects of chromopeptide nanoarchitectonics. This review will provide insights into chromopeptide nanoarchitectonics and corresponding materials with precise designs, flexible nanostructures and versatile functions. In addition, knowledge involving chromopeptide nanoarchitectonics may aid in the development of many other kinds of supramolecular biological materials and bioengineering techniques.
Author Yan, Xuehai
Chang, Rui
Zhao, Luyang
Li, Junbai
Xing, Ruirui
AuthorAffiliation School of Chemical Engineering
Chinese Academy of Sciences
Interface and Chemical Thermodynamics Institute of Chemistry
Center for Mesoscience, Institute of Process Engineering
CAS Key Lab of Colloid
Beijing National Laboratory for Molecular Sciences
Institute of Process Engineering
Chinese Academy of Sciences Beijing
State Key Laboratory of Biochemical Engineering
University of Chinese Academy of Sciences
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Biochemical Engineering
– sequence: 0
  name: Center for Mesoscience, Institute of Process Engineering
– sequence: 0
  name: Institute of Process Engineering
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: School of Chemical Engineering
– sequence: 0
  name: Interface and Chemical Thermodynamics Institute of Chemistry
– sequence: 0
  name: Chinese Academy of Sciences Beijing
– sequence: 0
  name: CAS Key Lab of Colloid
– sequence: 0
  name: Beijing National Laboratory for Molecular Sciences
– sequence: 0
  name: University of Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Rui
  surname: Chang
  fullname: Chang, Rui
– sequence: 2
  givenname: Luyang
  surname: Zhao
  fullname: Zhao, Luyang
– sequence: 3
  givenname: Ruirui
  surname: Xing
  fullname: Xing, Ruirui
– sequence: 4
  givenname: Junbai
  surname: Li
  fullname: Li, Junbai
– sequence: 5
  givenname: Xuehai
  surname: Yan
  fullname: Yan, Xuehai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36987746$$D View this record in MEDLINE/PubMed
BookMark eNpt0c9rFTEQB_AgFftavXhXFryIuJpfL9ntTZ7WCgUP6nnJTiZ9KdlkTXYP_e9N-1qF4mnm8JkvzMwJOYopIiEvGf3AqOg_Wg6FUqW3-ydkw6SirdRSHpENFVS1lDJ-TE5Kua4d04o_I8dC9Z3WUm3I_nyNsPgUTWhgn9OUZpwXb7GJJiaTYe8XhCVFD-WsmVJAWIPJjcXir-L7pmBwrSkFpzHcNCbaZvQppCsPNdDMc6jNbXx5Tp46Ewq-uK-n5Nf5l5-7i_by-9dvu0-XLUjRL20vrBBgQXGrnJHU8XFkwIBDp8GBNCMqdA6l6HjduAfJBB-t3KLeGuGcOCVvD7lzTr9XLMsw-QIYgomY1jJw3XPZa9azSt88otdpzfUSVXW0ItkJXtXre7WOE9phzn4y-WZ4uGEF9AAgp1IyugH8crf0ko0PA6PD7ZuGz3z34-5NF3Xk3aORh9T_4lcHnAv8df9-Lv4Ap-GeQQ
CitedBy_id crossref_primary_10_1016_j_bioactmat_2024_01_023
crossref_primary_10_1002_syst_202400068
crossref_primary_10_1021_acsnano_4c15587
crossref_primary_10_1016_j_isci_2023_107048
crossref_primary_10_1039_D4SC05575F
crossref_primary_10_69565_jems_v3i3_392
crossref_primary_10_1016_j_cej_2025_159275
crossref_primary_10_1002_chem_202303204
crossref_primary_10_1002_cmdc_202300599
crossref_primary_10_1007_s40242_025_4241_7
crossref_primary_10_1021_acs_accounts_5c00043
crossref_primary_10_1016_j_microc_2024_112365
crossref_primary_10_1021_acs_accounts_3c00592
crossref_primary_10_1016_j_bioactmat_2023_09_020
crossref_primary_10_1002_adfm_202411179
crossref_primary_10_1016_j_ijbiomac_2024_136923
crossref_primary_10_1093_bulcsj_bcsj_20230224
crossref_primary_10_1002_adma_202305099
crossref_primary_10_1039_D4TB00365A
crossref_primary_10_1021_jacs_4c00826
crossref_primary_10_1021_acs_chemmater_3c01291
crossref_primary_10_1360_SSC_2023_0155
crossref_primary_10_1002_ange_202314578
crossref_primary_10_1093_chemle_upae241
crossref_primary_10_1021_accountsmr_4c00172
crossref_primary_10_1038_s44303_024_00008_4
crossref_primary_10_1039_D3CP04556K
crossref_primary_10_1039_D4NR00609G
crossref_primary_10_3390_ma17235918
crossref_primary_10_1002_smll_202406171
crossref_primary_10_1021_jacs_3c09202
crossref_primary_10_1039_D3CC04952C
crossref_primary_10_1002_adma_202401678
crossref_primary_10_3390_chemosensors11100528
crossref_primary_10_1021_acsanm_4c02397
crossref_primary_10_1021_acsami_4c18320
crossref_primary_10_35848_1347_4065_ad4ad8
crossref_primary_10_6023_A23050240
crossref_primary_10_1021_acsmaterialslett_3c00925
crossref_primary_10_1021_acs_nanolett_4c06452
crossref_primary_10_3390_molecules29133168
crossref_primary_10_1002_anie_202314578
crossref_primary_10_1007_s10904_024_03065_9
crossref_primary_10_1016_j_jconrel_2024_02_048
crossref_primary_10_1016_j_molstruc_2024_139229
crossref_primary_10_1021_acs_biomac_4c00141
crossref_primary_10_1021_acsmaterialslett_3c01337
crossref_primary_10_1039_D4TB01604A
crossref_primary_10_3390_mi15020282
crossref_primary_10_1039_D4BM00893F
crossref_primary_10_1021_acsami_3c15841
crossref_primary_10_1021_acs_biomac_3c01453
crossref_primary_10_1016_j_colsurfa_2025_136227
crossref_primary_10_1021_acs_biomac_3c01413
crossref_primary_10_1002_adtp_202300329
crossref_primary_10_1021_acsami_4c13792
crossref_primary_10_1039_D3TB02610H
crossref_primary_10_1021_acsnano_4c08083
crossref_primary_10_1021_jacs_3c10779
crossref_primary_10_1016_j_colsurfa_2023_133029
crossref_primary_10_1021_jacs_4c10309
crossref_primary_10_1093_bulcsj_uoad001
crossref_primary_10_3390_molecules29194705
crossref_primary_10_1002_anbr_202400136
crossref_primary_10_1021_acs_analchem_4c01050
crossref_primary_10_1039_D4NH00371C
crossref_primary_10_3390_molecules28237750
crossref_primary_10_1007_s11224_024_02361_x
crossref_primary_10_1016_j_ccr_2023_215530
crossref_primary_10_3390_ma17040936
crossref_primary_10_1039_D3SM01151H
crossref_primary_10_3390_ma17010271
crossref_primary_10_1039_D3NR05557D
crossref_primary_10_1002_cphc_202400596
crossref_primary_10_1002_smll_202304675
crossref_primary_10_1016_j_cis_2025_103420
crossref_primary_10_1021_acs_bioconjchem_3c00432
crossref_primary_10_1021_acsnano_4c17702
Cites_doi 10.1039/D0BM01467B
10.1016/j.biomaterials.2019.05.004
10.1016/S0092-8674(00)81402-6
10.1038/nbt874
10.1039/C6SC00737F
10.1002/sstr.202000068
10.31635/ccschem.019.20180017
10.1021/acs.bioconjchem.1c00123
10.1039/c5pp00038f
10.1021/cr9900331
10.1021/cr020622y
10.1021/jacs.6b11382
10.1038/nature08304
10.1046/j.1365-2796.2003.01228.x
10.1126/science.134.3478.556
10.1021/acsnano.7b09112
10.1021/jm801052f
10.1021/acsabm.0c00214
10.1002/anie.201506154
10.1002/adma.201900822
10.1021/ar00051a007
10.1021/cr400479b
10.1002/adfm.201606530
10.1002/1521-3765(20010601)7:11<2449::AID-CHEM24490>3.0.CO;2-A
10.1016/0169-409X(95)00023-Z
10.1021/jp902870f
10.1039/C6CS00176A
10.1016/S1572-1000(05)00007-4
10.1039/C6TB00406G
10.31635/ccschem.021.202100771
10.1002/anie.201103244
10.1002/adfm.201702122
10.1039/C6OB00099A
10.1002/adtp.201900048
10.1126/science.aab0214
10.1021/ja9627656
10.1038/s41589-020-00689-z
10.1002/pep2.24038
10.1021/acsami.7b04447
10.1021/jacs.8b04912
10.1038/nrc1821
10.3390/ijms23073577
10.1039/B915149B
10.1002/chem.201903322
10.1002/adfm.201804688
10.1016/j.cej.2021.129334
10.1016/j.bpc.2013.03.003
10.1021/cr9500500
10.1016/j.jconrel.2005.11.017
10.1007/s002329900201
10.1016/S0040-4039(97)00755-7
10.1021/jm301311c
10.1042/BJ20150942
10.1002/mabi.201800410
10.1002/adma.202200139
10.1021/nl201400z
10.1039/D0BM02201B
10.1016/j.bmc.2015.02.014
10.1039/C8BM00399H
10.1016/j.biomaterials.2020.119933
10.1039/C6CP01358A
10.1038/s41570-019-0095-1
10.1021/acs.nanolett.8b03174
10.1021/jacs.7b04394
10.1038/nmat4474
10.1039/c0cs90015j
10.1039/b915923c
10.1021/acsami.5b08637
10.1021/ja9704545
10.1038/nrc2167
10.1021/jm050893b
10.1080/17425247.2016.1182485
10.1002/adma.202006902
10.1002/adfm.201600170
10.1021/ja100936w
10.1039/C8NP00031J
10.1021/jacs.9b09935
10.1039/C4CS00247D
10.1021/acsnano.7b08215
10.1002/adma.201502454
10.1038/nbt943
10.1038/s41570-019-0129-8
10.1351/pac198658091193
10.1021/cr00011a005
10.1016/j.gee.2016.12.005
10.1016/0014-5793(90)81016-H
10.1177/1091581817697685
10.1002/anie.201704678
10.1021/ja972492u
10.1002/anie.201909825
10.1158/0008-5472.CAN-15-0471
10.1039/D0NH00680G
10.1021/acsami.8b11699
10.1002/adma.201502598
10.1039/C6CS00458J
10.1039/C6CP07450B
10.1038/nbt1220
10.1021/acsnano.9b01689
10.1021/jacs.0c11060
10.1021/acs.chemrev.7b00552
10.1246/bcsj.20180248
10.1021/acsami.7b06431
10.1002/anie.202008708
10.1038/s41557-022-01055-3
10.1021/ja056357q
10.1021/ja211035w
10.1002/anie.200301739
10.1016/S0140-6736(05)66544-0
10.1073/pnas.2231273100
10.1063/1.2195024
10.1039/b003786i
10.1002/adfm.201806877
10.1016/S0014-5793(01)02930-1
10.1021/jm301509n
10.1039/D0SC02937H
10.1002/pep2.24202
10.1002/adma.201605021
10.1016/S1535-6108(02)00238-6
10.1002/anie.201606795
10.1021/acsnano.0c06881
10.1126/science.1216210
10.1021/cr000045i
10.1021/cr00088a005
10.1021/cm025664h
10.1039/D0BM00782J
10.1021/acs.nanolett.9b03136
10.1038/s41570-019-0153-8
10.1021/bc0602578
10.1002/anie.201308792
10.1039/cs9972600169
10.1016/j.ccr.2020.213418
10.1002/adhm.201800380
10.1039/C2CS35123D
10.1021/ja057254a
10.1039/D0CS00215A
10.1016/j.biomaterials.2018.01.045
10.1021/ar800150g
10.1039/C8CS00618K
10.1002/anie.202000802
10.1039/C4CS00164H
10.1002/anie.201409149
10.1016/S0079-6107(97)00010-2
10.1039/D0CC07199D
10.1124/dmd.106.013763
10.1016/j.cocis.2017.12.004
10.1038/nchem.2122
10.1021/ja502615n
10.1021/acs.chemrev.0c01291
10.1021/acsnano.7b00216
10.1038/s41467-019-12848-5
10.1021/acs.chemmater.7b00966
10.1021/acs.inorgchem.7b00847
10.1016/j.biomaterials.2018.10.005
10.1007/s10540-006-9030-z
10.1038/nrc2403
10.1002/anie.200902672
10.1039/D1CC06355C
10.1016/j.biomaterials.2019.119494
10.1039/C8CS00001H
10.1039/cs9952400019
10.1038/nature06451
10.1002/adma.202100595
10.1021/ar00147a005
10.1016/j.apmt.2019.04.017
10.1039/C9CC06125H
10.1002/anie.201509810
10.1021/jacs.9b06142
10.1021/acsami.6b05795
10.3390/ijms222212122
10.1038/ncomms8984
10.1172/JCI114322
10.1016/j.cis.2015.09.001
10.1021/jm401653r
10.1021/acs.molpharmaceut.7b01064
10.1038/nchem.1145
10.1021/jacs.7b01588
10.1021/acs.jpclett.0c02138
10.1016/j.cej.2020.125995
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d2cs00675h
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 2712
ExternalDocumentID 36987746
10_1039_D2CS00675H
d2cs00675h
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
CGR
CUY
CVF
ECM
EIF
NPM
YIN
Z5M
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c439t-93d33cdc62d6fa40f2bb1c1c2c87cfc4abe6effe43826759c4132bd45e75a3ff3
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 00:52:24 EDT 2025
Sun Jun 29 12:48:18 EDT 2025
Wed Feb 19 02:23:47 EST 2025
Thu Apr 24 23:07:25 EDT 2025
Tue Jul 01 04:28:19 EDT 2025
Tue Dec 17 20:58:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-93d33cdc62d6fa40f2bb1c1c2c87cfc4abe6effe43826759c4132bd45e75a3ff3
Notes Rui Chang received her PhD degree from the Institute of Process Engineering (IPE), University of Chinese Academy of Sciences (UCAS), in 2022; then she started post-doctoral research at the Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS), under the supervision of Prof. Yan in the same year. Her research interests are mainly focused on peptide-based nanodrugs and their application in the area of antitumor theranostics, especially phototherapy and immunotherapy.
Xuehai Yan is a full professor at the Institute of Process Engineering, Chinese Academy of Sciences (CAS). Currently, he is the deputy director of the State Key Laboratory of Biochemical Engineering and the Center of Mesoscience, IPE, CAS. His research interests are focused on peptide self-assembly and engineering, supramolecular colloids and crystals, phase evolution and dynamic transition, as well as cancer phototherapy and immunotherapy.
Junbai Li is a professor at the Institute of Chemistry in the Chinese Academy of Sciences. His research interests include molecular biomimetics based on molecular assembly, reconstitution of motor proteins, self-assembly of dipeptides, biointerfaces, bioinspired materials, and nanostructure design.
Ruirui Xing is currently an associate professor at the Institute of Process Engineering (IPE), CAS. Her research interests are focused on the design and self-assembly of functional peptides, supramolecular effects, nanomaterials and nanodrugs, and applications in the field of biomedicine.
Luyang Zhao received his PhD degree in chemistry in 2016 from the University of Science and Technology Beijing. He then joined Prof. Xuehai Yan's group as a postdoc at the State Key Laboratory of Biochemical Engineering, IPE, CAS, and became an associated professor in 2019. His research interests are focused on the design of peptide-based bioactive molecules and self-assembling photosensitive materials.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0890-0340
0000-0001-9575-3125
OpenAccessLink http://pubs.rsc.org/en/content/articlepdf/2023/CS/D2CS00675H
PMID 36987746
PQID 2804974832
PQPubID 2047503
PageCount 25
ParticipantIDs pubmed_primary_36987746
rsc_primary_d2cs00675h
proquest_miscellaneous_2792497191
crossref_citationtrail_10_1039_D2CS00675H
crossref_primary_10_1039_D2CS00675H
proquest_journals_2804974832
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-24
PublicationDateYYYYMMDD 2023-04-24
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-24
  day: 24
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhang (D2CS00675H/cit27/1) 2003; 21
Yu (D2CS00675H/cit29/1) 1996; 118
Wehner (D2CS00675H/cit35/1) 2020; 4
Song (D2CS00675H/cit98/1) 2018; 12
Overall (D2CS00675H/cit161/1) 2006; 6
Chang (D2CS00675H/cit93/1) 2022; 34
Adler-Abramovich (D2CS00675H/cit30/1) 2014; 43
Knop (D2CS00675H/cit71/1) 2010; 49
Qiu (D2CS00675H/cit120/1) 2021; 9
Song (D2CS00675H/cit31/1) 2021; 121
Zou (D2CS00675H/cit53/1) 2017; 139
Han (D2CS00675H/cit99/1) 2017; 11
Cheng (D2CS00675H/cit75/1) 2019; 19
Liu (D2CS00675H/cit170/1) 2017; 56
Naik (D2CS00675H/cit1/1) 2017; 117
Reed (D2CS00675H/cit81/1) 1988; 88
Markowska (D2CS00675H/cit67/1) 2021; 22
Jia (D2CS00675H/cit123/1) 2018; 7
Li (D2CS00675H/cit105/1) 2021; 33
Zhang (D2CS00675H/cit97/1) 2015; 27
Qin (D2CS00675H/cit38/1) 2015; 348
Carrion (D2CS00675H/cit68/1) 2017; 56
Wasielewski (D2CS00675H/cit166/1) 1992; 92
Luo (D2CS00675H/cit94/1) 2017; 27
Kelland (D2CS00675H/cit151/1) 2007; 7
Liu (D2CS00675H/cit133/1) 2014; 114
Solomon (D2CS00675H/cit47/1) 2017; 139
Cogdell (D2CS00675H/cit37/1) 1997; 68
Li (D2CS00675H/cit116/1) 2020; 11
Zhao (D2CS00675H/cit16/1) 2019; 92
Tshuva (D2CS00675H/cit134/1) 2004; 104
Chang (D2CS00675H/cit14/1) 2019; 2
Liu (D2CS00675H/cit169/1) 2016; 55
Liang (D2CS00675H/cit118/1) 2016; 45
Jiang (D2CS00675H/cit128/1) 2018; 10
Ulijn (D2CS00675H/cit25/1) 2010; 39
Dosselli (D2CS00675H/cit56/1) 2013; 56
You (D2CS00675H/cit15/1) 2015; 23
Zalipsky (D2CS00675H/cit70/1) 1995; 16
Huang (D2CS00675H/cit146/1) 2006; 128
Huang (D2CS00675H/cit110/1) 2018; 6
Armstrong (D2CS00675H/cit135/1) 1997; 26
Fry (D2CS00675H/cit46/1) 2020; 142
Zou (D2CS00675H/cit48/1) 2014; 53
Aoudia (D2CS00675H/cit34/1) 1997; 119
Gao (D2CS00675H/cit119/1) 2021; 417
Wang (D2CS00675H/cit132/1) 2020; 400
Sun (D2CS00675H/cit174/1) 2017; 19
Yin (D2CS00675H/cit3/1) 2008; 451
Liu (D2CS00675H/cit115/1) 2022; 58
Gurskaya (D2CS00675H/cit8/1) 2001; 507
Zhang (D2CS00675H/cit43/1) 2009; 113
Tirand (D2CS00675H/cit159/1) 2007; 35
Ariga (D2CS00675H/cit5/1) 2022; 23
Muller-Dethlefs (D2CS00675H/cit40/1) 2000; 100
Johnson (D2CS00675H/cit41/1) 2010; 132
Bard (D2CS00675H/cit165/1) 1995; 28
Chakroun (D2CS00675H/cit84/1) 2019; 13
Parrish-Novak (D2CS00675H/cit101/1) 2017; 36
Nikoloudakis (D2CS00675H/cit66/1) 2019; 55
Fidel (D2CS00675H/cit100/1) 2015; 75
Liu (D2CS00675H/cit147/1) 2018; 18
Pan (D2CS00675H/cit155/1) 2012; 134
Jin (D2CS00675H/cit111/1) 2017; 9
Reich (D2CS00675H/cit10/1) 1961; 134
Huffman (D2CS00675H/cit12/1) 1998; 120
Chen (D2CS00675H/cit148/1) 2020; 8
Sakamoto (D2CS00675H/cit45/1) 2001; 7
Rut (D2CS00675H/cit72/1) 2021; 17
Ariga (D2CS00675H/cit6/1) 2021; 6
D'Souza A (D2CS00675H/cit73/1) 2016; 13
Mao (D2CS00675H/cit63/1) 2018; 161
Biscaglia (D2CS00675H/cit39/1) 2018; 110
Zou (D2CS00675H/cit7/1) 2016; 28
Wang (D2CS00675H/cit114/1) 2012; 335
Koti (D2CS00675H/cit42/1) 2003; 15
Kovaric (D2CS00675H/cit52/1) 2006; 128
Hunter (D2CS00675H/cit80/1) 2004; 43
Li (D2CS00675H/cit106/1) 2020; 3
Ward (D2CS00675H/cit2/1) 2013; 42
Xing (D2CS00675H/cit103/1) 2019; 31
Lo (D2CS00675H/cit60/1) 2009; 52
Di Valentin (D2CS00675H/cit179/1) 2014; 136
Scholes (D2CS00675H/cit36/1) 2011; 3
Meyer (D2CS00675H/cit139/1) 1986; 58
Bonnett (D2CS00675H/cit21/1) 1995; 24
Hallahan (D2CS00675H/cit156/1) 2003; 3
Cheng (D2CS00675H/cit126/1) 2019; 16
Ethirajan (D2CS00675H/cit51/1) 2011; 40
Chen (D2CS00675H/cit86/1) 2021; 33
Raghuraman (D2CS00675H/cit152/1) 2007; 27
Lu (D2CS00675H/cit136/1) 2009; 460
Liu (D2CS00675H/cit19/1) 2016; 55
Li (D2CS00675H/cit61/1) 2016; 8
Liu (D2CS00675H/cit173/1) 2017; 11
Ellis (D2CS00675H/cit160/1) 2008; 8
Song (D2CS00675H/cit180/1) 2021; 143
Liu (D2CS00675H/cit143/1) 2019; 36
Luan (D2CS00675H/cit17/1) 2016; 14
Stefflova (D2CS00675H/cit109/1) 2007; 18
Early Breast Cancer Trialists’ Collaborative (D2CS00675H/cit149/1) 2005; 365
Zhou (D2CS00675H/cit121/1) 2017; 27
Abbas (D2CS00675H/cit23/1) 2017; 29
Zhou (D2CS00675H/cit59/1) 2015; 6
Liu (D2CS00675H/cit171/1) 2017; 2
Zhang (D2CS00675H/cit112/1) 2006; 24
Lei (D2CS00675H/cit141/1) 2020; 8
Zhou (D2CS00675H/cit57/1) 2016; 4
Zhao (D2CS00675H/cit91/1) 2019; 29
Liu (D2CS00675H/cit49/1) 2015; 54
Zhao (D2CS00675H/cit95/1) 2019; 1
Li (D2CS00675H/cit130/1) 2018; 15
Yuan (D2CS00675H/cit82/1) 2019; 3
Ranyuk (D2CS00675H/cit78/1) 2013; 56
Frederix (D2CS00675H/cit177/1) 2015; 7
Han (D2CS00675H/cit124/1) 2016; 26
Chen (D2CS00675H/cit87/1) 2015; 225
Liu (D2CS00675H/cit131/1) 2020; 242
Geier (D2CS00675H/cit18/1) 1997; 38
Sono (D2CS00675H/cit11/1) 1996; 96
Li (D2CS00675H/cit107/1) 2019; 25
Dosselli (D2CS00675H/cit54/1) 2014; 57
Liu (D2CS00675H/cit145/1) 2019; 48
Boman (D2CS00675H/cit142/1) 2003; 254
Wang (D2CS00675H/cit33/1) 2016; 45
Han (D2CS00675H/cit76/1) 2017; 9
Sibrian-Vazquez (D2CS00675H/cit58/1) 2006; 49
Liu (D2CS00675H/cit167/1) 2016; 18
Sun (D2CS00675H/cit89/1) 2015; 54
Kim (D2CS00675H/cit168/1) 2012; 51
Lal (D2CS00675H/cit144/1) 2008; 41
Xie (D2CS00675H/cit154/1) 2020; 49
Orosz (D2CS00675H/cit64/1) 2013; 177–178
Kasperkiewicz (D2CS00675H/cit77/1) 2017; 139
Yu (D2CS00675H/cit125/1) 2016; 7
Rosenblatt (D2CS00675H/cit13/1) 2003; 100
Webber (D2CS00675H/cit26/1) 2016; 15
Moret (D2CS00675H/cit55/1) 2015; 14
Castano (D2CS00675H/cit22/1) 2004; 1
Um (D2CS00675H/cit122/1) 2019; 224
Cheng (D2CS00675H/cit32/1) 2001; 101
Sakamoto (D2CS00675H/cit44/1) 2000
Li (D2CS00675H/cit83/1) 2020; 421
Matsumura (D2CS00675H/cit150/1) 1986; 46
Klibanov (D2CS00675H/cit74/1) 1990; 268
Ng (D2CS00675H/cit162/1) 2018; 28
Mendonca (D2CS00675H/cit50/1) 2021; 32
Tao (D2CS00675H/cit172/1) 2017; 29
Zhao (D2CS00675H/cit88/1) 2014; 26
Sun (D2CS00675H/cit104/1) 2020; 59
Schreiber (D2CS00675H/cit79/1) 2019; 3
Bechinger (D2CS00675H/cit153/1) 1997; 156
Li (D2CS00675H/cit24/1) 2018; 35
Ariga (D2CS00675H/cit4/1) 2020; 59
Cheng (D2CS00675H/cit129/1) 2019; 211
Chang (D2CS00675H/cit164/1) 2020; 1
Bullard (D2CS00675H/cit178/1) 2019; 141
Zhao (D2CS00675H/cit163/1) 2020; 113
Hessel (D2CS00675H/cit90/1) 2011; 11
Xu (D2CS00675H/cit113/1) 2006; 77
Abrahamse (D2CS00675H/cit20/1) 2016; 473
Kubas (D2CS00675H/cit138/1) 1988; 21
Batra (D2CS00675H/cit176/1) 2022; 14
Li (D2CS00675H/cit117/1) 2019; 48
Li (D2CS00675H/cit140/1) 2019; 19
Tirand (D2CS00675H/cit69/1) 2006; 111
Cho (D2CS00675H/cit62/1) 2020; 14
Ghosh (D2CS00675H/cit65/1) 2021; 57
Meneghin (D2CS00675H/cit175/1) 2020; 11
Li (D2CS00675H/cit108/1) 2015; 7
Li (D2CS00675H/cit137/1) 2018; 140
An (D2CS00675H/cit102/1) 2019; 10
Cheng (D2CS00675H/cit127/1) 2019; 188
Soker (D2CS00675H/cit157/1) 1998; 92
Verkhusha (D2CS00675H/cit9/1) 2004; 22
Connolly (D2CS00675H/cit158/1) 1989; 84
Fleming (D2CS00675H/cit28/1) 2014; 43
Zhao (D2CS00675H/cit85/1) 2010; 39
Zhao (D2CS00675H/cit96/1) 2021; 3
Zhao (D2CS00675H/cit92/1) 2020; 59
References_xml – volume: 8
  start-page: 6695
  year: 2020
  ident: D2CS00675H/cit141/1
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM01467B
– volume: 211
  start-page: 14
  year: 2019
  ident: D2CS00675H/cit129/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.05.004
– volume: 92
  start-page: 735
  year: 1998
  ident: D2CS00675H/cit157/1
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81402-6
– volume: 21
  start-page: 1171
  year: 2003
  ident: D2CS00675H/cit27/1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt874
– volume: 7
  start-page: 4237
  year: 2016
  ident: D2CS00675H/cit125/1
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC00737F
– volume: 1
  start-page: 2000068
  year: 2020
  ident: D2CS00675H/cit164/1
  publication-title: Small Struct.
  doi: 10.1002/sstr.202000068
– volume: 1
  start-page: 173
  year: 2019
  ident: D2CS00675H/cit95/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.019.20180017
– volume: 32
  start-page: 1067
  year: 2021
  ident: D2CS00675H/cit50/1
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.1c00123
– volume: 14
  start-page: 1238
  year: 2015
  ident: D2CS00675H/cit55/1
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c5pp00038f
– volume: 100
  start-page: 143
  year: 2000
  ident: D2CS00675H/cit40/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr9900331
– volume: 104
  start-page: 987
  year: 2004
  ident: D2CS00675H/cit134/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr020622y
– volume: 139
  start-page: 1921
  year: 2017
  ident: D2CS00675H/cit53/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11382
– volume: 460
  start-page: 855
  year: 2009
  ident: D2CS00675H/cit136/1
  publication-title: Nature
  doi: 10.1038/nature08304
– volume: 254
  start-page: 197
  year: 2003
  ident: D2CS00675H/cit142/1
  publication-title: J. Intern. Med.
  doi: 10.1046/j.1365-2796.2003.01228.x
– volume: 134
  start-page: 556
  year: 1961
  ident: D2CS00675H/cit10/1
  publication-title: Science
  doi: 10.1126/science.134.3478.556
– volume: 12
  start-page: 1978
  year: 2018
  ident: D2CS00675H/cit98/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b09112
– volume: 52
  start-page: 358
  year: 2009
  ident: D2CS00675H/cit60/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm801052f
– volume: 3
  start-page: 5463
  year: 2020
  ident: D2CS00675H/cit106/1
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c00214
– volume: 54
  start-page: 11526
  year: 2015
  ident: D2CS00675H/cit89/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201506154
– volume: 31
  start-page: 1900822
  year: 2019
  ident: D2CS00675H/cit103/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900822
– volume: 28
  start-page: 141
  year: 1995
  ident: D2CS00675H/cit165/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00051a007
– volume: 114
  start-page: 4366
  year: 2014
  ident: D2CS00675H/cit133/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr400479b
– volume: 27
  start-page: 1606530
  year: 2017
  ident: D2CS00675H/cit121/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606530
– volume: 7
  start-page: 2449
  year: 2001
  ident: D2CS00675H/cit45/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/1521-3765(20010601)7:11<2449::AID-CHEM24490>3.0.CO;2-A
– volume: 16
  start-page: 157
  year: 1995
  ident: D2CS00675H/cit70/1
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/0169-409X(95)00023-Z
– volume: 113
  start-page: 14015
  year: 2009
  ident: D2CS00675H/cit43/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp902870f
– volume: 45
  start-page: 5589
  year: 2016
  ident: D2CS00675H/cit33/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00176A
– volume: 1
  start-page: 279
  year: 2004
  ident: D2CS00675H/cit22/1
  publication-title: Photodiagn. Photodyn. Ther.
  doi: 10.1016/S1572-1000(05)00007-4
– volume: 4
  start-page: 4855
  year: 2016
  ident: D2CS00675H/cit57/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB00406G
– volume: 3
  start-page: 678
  year: 2021
  ident: D2CS00675H/cit96/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.021.202100771
– volume: 51
  start-page: 517
  year: 2012
  ident: D2CS00675H/cit168/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201103244
– volume: 27
  start-page: 1702122
  year: 2017
  ident: D2CS00675H/cit94/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702122
– volume: 14
  start-page: 2985
  year: 2016
  ident: D2CS00675H/cit17/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C6OB00099A
– volume: 2
  start-page: 1900048
  year: 2019
  ident: D2CS00675H/cit14/1
  publication-title: Adv. Therap.
  doi: 10.1002/adtp.201900048
– volume: 348
  start-page: 989
  year: 2015
  ident: D2CS00675H/cit38/1
  publication-title: Science
  doi: 10.1126/science.aab0214
– volume: 118
  start-page: 12515
  year: 1996
  ident: D2CS00675H/cit29/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9627656
– volume: 17
  start-page: 222
  year: 2021
  ident: D2CS00675H/cit72/1
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-00689-z
– volume: 110
  start-page: e24038
  year: 2018
  ident: D2CS00675H/cit39/1
  publication-title: Pept. Sci.
  doi: 10.1002/pep2.24038
– volume: 9
  start-page: 16043
  year: 2017
  ident: D2CS00675H/cit76/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04447
– volume: 140
  start-page: 10794
  year: 2018
  ident: D2CS00675H/cit137/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04912
– volume: 6
  start-page: 227
  year: 2006
  ident: D2CS00675H/cit161/1
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1821
– volume: 23
  start-page: 3577
  year: 2022
  ident: D2CS00675H/cit5/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23073577
– volume: 40
  start-page: 340
  year: 2011
  ident: D2CS00675H/cit51/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B915149B
– volume: 25
  start-page: 13429
  year: 2019
  ident: D2CS00675H/cit107/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201903322
– volume: 46
  start-page: 6387
  year: 1986
  ident: D2CS00675H/cit150/1
  publication-title: Cancer Res.
– volume: 28
  start-page: 1804688
  year: 2018
  ident: D2CS00675H/cit162/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804688
– volume: 417
  start-page: 129334
  year: 2021
  ident: D2CS00675H/cit119/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129334
– volume: 177–178
  start-page: 14
  year: 2013
  ident: D2CS00675H/cit64/1
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2013.03.003
– volume: 96
  start-page: 2841
  year: 1996
  ident: D2CS00675H/cit11/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr9500500
– volume: 111
  start-page: 153
  year: 2006
  ident: D2CS00675H/cit69/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2005.11.017
– volume: 156
  start-page: 197
  year: 1997
  ident: D2CS00675H/cit153/1
  publication-title: J. Membr. Biol.
  doi: 10.1007/s002329900201
– volume: 38
  start-page: 3821
  year: 1997
  ident: D2CS00675H/cit18/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(97)00755-7
– volume: 56
  start-page: 1520
  year: 2013
  ident: D2CS00675H/cit78/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm301311c
– volume: 473
  start-page: 347
  year: 2016
  ident: D2CS00675H/cit20/1
  publication-title: Biochem. J.
  doi: 10.1042/BJ20150942
– volume: 26
  start-page: 1445
  year: 2014
  ident: D2CS00675H/cit88/1
  publication-title: Prog. Chem.
– volume: 19
  start-page: 1800410
  year: 2019
  ident: D2CS00675H/cit75/1
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201800410
– volume: 34
  start-page: 2200139
  year: 2022
  ident: D2CS00675H/cit93/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200139
– volume: 11
  start-page: 2560
  year: 2011
  ident: D2CS00675H/cit90/1
  publication-title: Nano Lett.
  doi: 10.1021/nl201400z
– volume: 9
  start-page: 3433
  year: 2021
  ident: D2CS00675H/cit120/1
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM02201B
– volume: 23
  start-page: 1453
  year: 2015
  ident: D2CS00675H/cit15/1
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2015.02.014
– volume: 6
  start-page: 2925
  year: 2018
  ident: D2CS00675H/cit110/1
  publication-title: Biomater. Sci.
  doi: 10.1039/C8BM00399H
– volume: 242
  start-page: 119933
  year: 2020
  ident: D2CS00675H/cit131/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.119933
– volume: 18
  start-page: 16738
  year: 2016
  ident: D2CS00675H/cit167/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP01358A
– volume: 3
  start-page: 393
  year: 2019
  ident: D2CS00675H/cit79/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0095-1
– volume: 18
  start-page: 6577
  year: 2018
  ident: D2CS00675H/cit147/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03174
– volume: 139
  start-page: 10115
  year: 2017
  ident: D2CS00675H/cit77/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04394
– volume: 15
  start-page: 13
  year: 2016
  ident: D2CS00675H/cit26/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4474
– volume: 39
  start-page: 3349
  year: 2010
  ident: D2CS00675H/cit25/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs90015j
– volume: 39
  start-page: 3480
  year: 2010
  ident: D2CS00675H/cit85/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b915923c
– volume: 7
  start-page: 28319
  year: 2015
  ident: D2CS00675H/cit108/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08637
– volume: 120
  start-page: 6183
  year: 1998
  ident: D2CS00675H/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9704545
– volume: 7
  start-page: 573
  year: 2007
  ident: D2CS00675H/cit151/1
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2167
– volume: 49
  start-page: 1364
  year: 2006
  ident: D2CS00675H/cit58/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm050893b
– volume: 13
  start-page: 1257
  year: 2016
  ident: D2CS00675H/cit73/1
  publication-title: Expert Opin. Drug Delivery
  doi: 10.1080/17425247.2016.1182485
– volume: 33
  start-page: 2006902
  year: 2021
  ident: D2CS00675H/cit86/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006902
– volume: 26
  start-page: 4351
  year: 2016
  ident: D2CS00675H/cit124/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600170
– volume: 132
  start-page: 6498
  year: 2010
  ident: D2CS00675H/cit41/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100936w
– volume: 36
  start-page: 573
  year: 2019
  ident: D2CS00675H/cit143/1
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/C8NP00031J
– volume: 142
  start-page: 233
  year: 2020
  ident: D2CS00675H/cit46/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09935
– volume: 43
  start-page: 8150
  year: 2014
  ident: D2CS00675H/cit28/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00247D
– volume: 11
  start-page: 12840
  year: 2017
  ident: D2CS00675H/cit173/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08215
– volume: 28
  start-page: 1031
  year: 2016
  ident: D2CS00675H/cit7/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502454
– volume: 22
  start-page: 289
  year: 2004
  ident: D2CS00675H/cit9/1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt943
– volume: 3
  start-page: 567
  year: 2019
  ident: D2CS00675H/cit82/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0129-8
– volume: 58
  start-page: 1193
  year: 1986
  ident: D2CS00675H/cit139/1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac198658091193
– volume: 92
  start-page: 435
  year: 1992
  ident: D2CS00675H/cit166/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr00011a005
– volume: 2
  start-page: 58
  year: 2017
  ident: D2CS00675H/cit171/1
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2016.12.005
– volume: 268
  start-page: 235
  year: 1990
  ident: D2CS00675H/cit74/1
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(90)81016-H
– volume: 36
  start-page: 104
  year: 2017
  ident: D2CS00675H/cit101/1
  publication-title: Int. J. Toxicol.
  doi: 10.1177/1091581817697685
– volume: 56
  start-page: 7876
  year: 2017
  ident: D2CS00675H/cit170/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201704678
– volume: 119
  start-page: 12859
  year: 1997
  ident: D2CS00675H/cit34/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja972492u
– volume: 59
  start-page: 3793
  year: 2020
  ident: D2CS00675H/cit92/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909825
– volume: 75
  start-page: 4283
  year: 2015
  ident: D2CS00675H/cit100/1
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-0471
– volume: 6
  start-page: 364
  year: 2021
  ident: D2CS00675H/cit6/1
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D0NH00680G
– volume: 10
  start-page: 31674
  year: 2018
  ident: D2CS00675H/cit128/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11699
– volume: 27
  start-page: 6125
  year: 2015
  ident: D2CS00675H/cit97/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502598
– volume: 45
  start-page: 6250
  year: 2016
  ident: D2CS00675H/cit118/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00458J
– volume: 19
  start-page: 562
  year: 2017
  ident: D2CS00675H/cit174/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP07450B
– volume: 24
  start-page: 848
  year: 2006
  ident: D2CS00675H/cit112/1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1220
– volume: 13
  start-page: 7780
  year: 2019
  ident: D2CS00675H/cit84/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01689
– volume: 143
  start-page: 382
  year: 2021
  ident: D2CS00675H/cit180/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11060
– volume: 117
  start-page: 12581
  year: 2017
  ident: D2CS00675H/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00552
– volume: 92
  start-page: 70
  year: 2019
  ident: D2CS00675H/cit16/1
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20180248
– volume: 9
  start-page: 25755
  year: 2017
  ident: D2CS00675H/cit111/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b06431
– volume: 59
  start-page: 20582
  year: 2020
  ident: D2CS00675H/cit104/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202008708
– volume: 14
  start-page: 1427
  year: 2022
  ident: D2CS00675H/cit176/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-022-01055-3
– volume: 128
  start-page: 4166
  year: 2006
  ident: D2CS00675H/cit52/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056357q
– volume: 134
  start-page: 5722
  year: 2012
  ident: D2CS00675H/cit155/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211035w
– volume: 43
  start-page: 5310
  year: 2004
  ident: D2CS00675H/cit80/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200301739
– volume: 365
  start-page: 1687
  year: 2005
  ident: D2CS00675H/cit149/1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)66544-0
– volume: 100
  start-page: 13140
  year: 2003
  ident: D2CS00675H/cit13/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2231273100
– volume: 77
  start-page: 041101
  year: 2006
  ident: D2CS00675H/cit113/1
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2195024
– start-page: 1741
  year: 2000
  ident: D2CS00675H/cit44/1
  publication-title: Chem. Commun.
  doi: 10.1039/b003786i
– volume: 29
  start-page: 1806877
  year: 2019
  ident: D2CS00675H/cit91/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806877
– volume: 507
  start-page: 16
  year: 2001
  ident: D2CS00675H/cit8/1
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02930-1
– volume: 56
  start-page: 1052
  year: 2013
  ident: D2CS00675H/cit56/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm301509n
– volume: 11
  start-page: 8644
  year: 2020
  ident: D2CS00675H/cit116/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC02937H
– volume: 113
  start-page: e24202
  year: 2020
  ident: D2CS00675H/cit163/1
  publication-title: Pept. Sci.
  doi: 10.1002/pep2.24202
– volume: 29
  start-page: 1605021
  year: 2017
  ident: D2CS00675H/cit23/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605021
– volume: 3
  start-page: 63
  year: 2003
  ident: D2CS00675H/cit156/1
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00238-6
– volume: 55
  start-page: 12503
  year: 2016
  ident: D2CS00675H/cit169/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201606795
– volume: 14
  start-page: 15793
  year: 2020
  ident: D2CS00675H/cit62/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c06881
– volume: 335
  start-page: 1458
  year: 2012
  ident: D2CS00675H/cit114/1
  publication-title: Science
  doi: 10.1126/science.1216210
– volume: 101
  start-page: 3219
  year: 2001
  ident: D2CS00675H/cit32/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr000045i
– volume: 88
  start-page: 899
  year: 1988
  ident: D2CS00675H/cit81/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr00088a005
– volume: 15
  start-page: 369
  year: 2003
  ident: D2CS00675H/cit42/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm025664h
– volume: 8
  start-page: 4447
  year: 2020
  ident: D2CS00675H/cit148/1
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM00782J
– volume: 19
  start-page: 7965
  year: 2019
  ident: D2CS00675H/cit140/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03136
– volume: 4
  start-page: 38
  year: 2020
  ident: D2CS00675H/cit35/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0153-8
– volume: 18
  start-page: 379
  year: 2007
  ident: D2CS00675H/cit109/1
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc0602578
– volume: 53
  start-page: 2366
  year: 2014
  ident: D2CS00675H/cit48/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201308792
– volume: 26
  start-page: 169
  year: 1997
  ident: D2CS00675H/cit135/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9972600169
– volume: 421
  start-page: 213418
  year: 2020
  ident: D2CS00675H/cit83/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213418
– volume: 7
  start-page: 1800380
  year: 2018
  ident: D2CS00675H/cit123/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201800380
– volume: 42
  start-page: 1619
  year: 2013
  ident: D2CS00675H/cit2/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35123D
– volume: 128
  start-page: 2115
  year: 2006
  ident: D2CS00675H/cit146/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057254a
– volume: 49
  start-page: 8065
  year: 2020
  ident: D2CS00675H/cit154/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00215A
– volume: 161
  start-page: 306
  year: 2018
  ident: D2CS00675H/cit63/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.01.045
– volume: 41
  start-page: 1842
  year: 2008
  ident: D2CS00675H/cit144/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800150g
– volume: 48
  start-page: 2053
  year: 2019
  ident: D2CS00675H/cit145/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00618K
– volume: 59
  start-page: 15424
  year: 2020
  ident: D2CS00675H/cit4/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202000802
– volume: 43
  start-page: 6881
  year: 2014
  ident: D2CS00675H/cit30/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00164H
– volume: 54
  start-page: 500
  year: 2015
  ident: D2CS00675H/cit49/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409149
– volume: 68
  start-page: 1
  year: 1997
  ident: D2CS00675H/cit37/1
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/S0079-6107(97)00010-2
– volume: 57
  start-page: 1603
  year: 2021
  ident: D2CS00675H/cit65/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC07199D
– volume: 35
  start-page: 806
  year: 2007
  ident: D2CS00675H/cit159/1
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.106.013763
– volume: 35
  start-page: 17
  year: 2018
  ident: D2CS00675H/cit24/1
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2017.12.004
– volume: 7
  start-page: 30
  year: 2015
  ident: D2CS00675H/cit177/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2122
– volume: 136
  start-page: 6582
  year: 2014
  ident: D2CS00675H/cit179/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502615n
– volume: 121
  start-page: 13936
  year: 2021
  ident: D2CS00675H/cit31/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01291
– volume: 11
  start-page: 3178
  year: 2017
  ident: D2CS00675H/cit99/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00216
– volume: 10
  start-page: 4861
  year: 2019
  ident: D2CS00675H/cit102/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12848-5
– volume: 29
  start-page: 4454
  year: 2017
  ident: D2CS00675H/cit172/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00966
– volume: 56
  start-page: 7210
  year: 2017
  ident: D2CS00675H/cit68/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00847
– volume: 188
  start-page: 1
  year: 2019
  ident: D2CS00675H/cit127/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.10.005
– volume: 27
  start-page: 189
  year: 2007
  ident: D2CS00675H/cit152/1
  publication-title: Biosci. Rep.
  doi: 10.1007/s10540-006-9030-z
– volume: 8
  start-page: 579
  year: 2008
  ident: D2CS00675H/cit160/1
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2403
– volume: 49
  start-page: 6288
  year: 2010
  ident: D2CS00675H/cit71/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200902672
– volume: 58
  start-page: 2247
  year: 2022
  ident: D2CS00675H/cit115/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC06355C
– volume: 224
  start-page: 119494
  year: 2019
  ident: D2CS00675H/cit122/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119494
– volume: 48
  start-page: 38
  year: 2019
  ident: D2CS00675H/cit117/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00001H
– volume: 24
  start-page: 19
  year: 1995
  ident: D2CS00675H/cit21/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9952400019
– volume: 451
  start-page: 318
  year: 2008
  ident: D2CS00675H/cit3/1
  publication-title: Nature
  doi: 10.1038/nature06451
– volume: 33
  start-page: 2100595
  year: 2021
  ident: D2CS00675H/cit105/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100595
– volume: 21
  start-page: 120
  year: 1988
  ident: D2CS00675H/cit138/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00147a005
– volume: 16
  start-page: 120
  year: 2019
  ident: D2CS00675H/cit126/1
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2019.04.017
– volume: 55
  start-page: 14103
  year: 2019
  ident: D2CS00675H/cit66/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06125H
– volume: 55
  start-page: 3036
  year: 2016
  ident: D2CS00675H/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201509810
– volume: 141
  start-page: 14707
  year: 2019
  ident: D2CS00675H/cit178/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06142
– volume: 8
  start-page: 17936
  year: 2016
  ident: D2CS00675H/cit61/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05795
– volume: 22
  start-page: 12122
  year: 2021
  ident: D2CS00675H/cit67/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms222212122
– volume: 6
  start-page: 7984
  year: 2015
  ident: D2CS00675H/cit59/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8984
– volume: 84
  start-page: 1470
  year: 1989
  ident: D2CS00675H/cit158/1
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI114322
– volume: 225
  start-page: 177
  year: 2015
  ident: D2CS00675H/cit87/1
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2015.09.001
– volume: 57
  start-page: 1403
  year: 2014
  ident: D2CS00675H/cit54/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm401653r
– volume: 15
  start-page: 1505
  year: 2018
  ident: D2CS00675H/cit130/1
  publication-title: Mol. Pharmaceutics
  doi: 10.1021/acs.molpharmaceut.7b01064
– volume: 3
  start-page: 763
  year: 2011
  ident: D2CS00675H/cit36/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1145
– volume: 139
  start-page: 8497
  year: 2017
  ident: D2CS00675H/cit47/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01588
– volume: 11
  start-page: 7972
  year: 2020
  ident: D2CS00675H/cit175/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02138
– volume: 400
  start-page: 125995
  year: 2020
  ident: D2CS00675H/cit132/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125995
SSID ssj0011762
Score 2.6475785
SecondaryResourceType review_article
Snippet Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2688
SubjectTerms Amino Acid Sequence
Bioengineering
Biological materials
Computer architecture
Molecular Structure
Nanostructures - chemistry
Peptides
Peptides - chemistry
Photosensitivity
Photosynthesis
Proteins
Self-assembly
Sequences
Title Functional chromopeptide nanoarchitectonics: molecular design, self-assembly and biological applications
URI https://www.ncbi.nlm.nih.gov/pubmed/36987746
https://www.proquest.com/docview/2804974832
https://www.proquest.com/docview/2792497191
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoAL4msQGCgILmiEJXZiJ9ymsqmgwgE6qbfKX1ErdenUNgf4B_i3eY4dJ6U7DC5R5TpJ6_fze8_vE6G3lIlY6pJEGmcySmUpIyGlSQTOlUxNObzGpvv1Gx1dpl-m2XQw-N2LWqq34oP8dWNeyf9QFcaAriZL9h8o6x8KA_AZ6AtXoDBcb0XjCxBKzpYn5yau7trEqCh9UvFq5V0EpvhtE_h21bbCPVFN3IZZ3o1elhEo0PpKLG0pJluWyRYR6Hm3-1qsrzLQxny6mqa9WAHLQr7Xi55lurHKjuuf3ElLGJ0u_MR1N3e8sAkjleCLvlkCE-NhsdnQbTqWMVXELkZaW-6a0jhKmS342LLfDPdglvd5KbUN_5xcxsw-a4_nx8SUTP2Ehz-M6M1GnWRrvfl_CTwfhtg44Ekx6-69gw4xnDeAYR6enU8-j71DKmHUOaTsv2or3ZLitLt7V7fZO7CA-rJu28o06svkAbrvzh3hmQXRQzTQ1SN0d9i2-3uM5h2Ywh0whftg-hh6KIUWSu_DHSCFAKSwA1LYB9ITdHlxPhmOIteGI4LNWmyjgihCpJIUK1ryNC6xEIlMJJY5g72dcqGpCT4yLmVYhUKCXoSFSjPNMk7Kkhyhg2pV6WcopLLkCheKCdAKteQ85gmH9WYsSUVGigC9axdwJl2NetMqZTnbJ1WA3vi517Yyy42zjls6zNzO3cxwDudiloIwC9Br_zWst3GW8UqvapjDjGWCJUUSoKeWfv41hBY5HJtogI6AoH5YYblp3jp_fqvf9gLd63bOMTrYrmv9ElTcrXjl4PcHrWGprQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+chromopeptide+nanoarchitectonics%3A+molecular+design%2C+self-assembly+and+biological+applications&rft.jtitle=Chemical+Society+reviews&rft.au=Chang%2C+Rui&rft.au=Zhao%2C+Luyang&rft.au=Xing%2C+Ruirui&rft.au=Li%2C+Junbai&rft.date=2023-04-24&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=52&rft.issue=8&rft.spage=2688&rft.epage=2712&rft_id=info:doi/10.1039%2FD2CS00675H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2CS00675H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon