Functional chromopeptide nanoarchitectonics: molecular design, self-assembly and biological applications
Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life processes, such as photosynthesis. Inspired by chromoproteins, researchers integrate simple peptides and photosensitive molecular motifs to g...
Saved in:
Published in | Chemical Society reviews Vol. 52; no. 8; pp. 2688 - 2712 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
24.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life processes, such as photosynthesis. Inspired by chromoproteins, researchers integrate simple peptides and photosensitive molecular motifs to generate chromopeptides. Compared with chromoproteins, chromopeptides exhibit a relatively simple molecular structure, flexible and adjustable photophysical properties, and a capability of programmable self-assembly. Chromopeptide self-assembly has attracted great attention as the resultant high-level architectures exhibit an ingenious combination of photofunctions and biofunctions. This review systematically summarizes recent advances in chromopeptide nanoarchitectonics with particular focus on the design strategy, assembly mechanism, and structure-function relationship. Among them, the effect of peptide sequences and the variation in photophysical performance are critically emphasized. On this basis, various applications, including biomedicine and artificial photosynthesis, are discussed together with the future prospects of chromopeptide nanoarchitectonics. This review will provide insights into chromopeptide nanoarchitectonics and corresponding materials with precise designs, flexible nanostructures and versatile functions. In addition, knowledge involving chromopeptide nanoarchitectonics may aid in the development of many other kinds of supramolecular biological materials and bioengineering techniques.
An overview of chromopeptide self-assembly is presented to systematically understand this kind of newly emerging peptide building block. |
---|---|
AbstractList | Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life processes, such as photosynthesis. Inspired by chromoproteins, researchers integrate simple peptides and photosensitive molecular motifs to generate chromopeptides. Compared with chromoproteins, chromopeptides exhibit a relatively simple molecular structure, flexible and adjustable photophysical properties, and a capability of programmable self-assembly. Chromopeptide self-assembly has attracted great attention as the resultant high-level architectures exhibit an ingenious combination of photofunctions and biofunctions. This review systematically summarizes recent advances in chromopeptide nanoarchitectonics with particular focus on the design strategy, assembly mechanism, and structure-function relationship. Among them, the effect of peptide sequences and the variation in photophysical performance are critically emphasized. On this basis, various applications, including biomedicine and artificial photosynthesis, are discussed together with the future prospects of chromopeptide nanoarchitectonics. This review will provide insights into chromopeptide nanoarchitectonics and corresponding materials with precise designs, flexible nanostructures and versatile functions. In addition, knowledge involving chromopeptide nanoarchitectonics may aid in the development of many other kinds of supramolecular biological materials and bioengineering techniques.
An overview of chromopeptide self-assembly is presented to systematically understand this kind of newly emerging peptide building block. Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life processes, such as photosynthesis. Inspired by chromoproteins, researchers integrate simple peptides and photosensitive molecular motifs to generate chromopeptides. Compared with chromoproteins, chromopeptides exhibit a relatively simple molecular structure, flexible and adjustable photophysical properties, and a capability of programmable self-assembly. Chromopeptide self-assembly has attracted great attention as the resultant high-level architectures exhibit an ingenious combination of photofunctions and biofunctions. This review systematically summarizes recent advances in chromopeptide nanoarchitectonics with particular focus on the design strategy, assembly mechanism, and structure–function relationship. Among them, the effect of peptide sequences and the variation in photophysical performance are critically emphasized. On this basis, various applications, including biomedicine and artificial photosynthesis, are discussed together with the future prospects of chromopeptide nanoarchitectonics. This review will provide insights into chromopeptide nanoarchitectonics and corresponding materials with precise designs, flexible nanostructures and versatile functions. In addition, knowledge involving chromopeptide nanoarchitectonics may aid in the development of many other kinds of supramolecular biological materials and bioengineering techniques. Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life processes, such as photosynthesis. Inspired by chromoproteins, researchers integrate simple peptides and photosensitive molecular motifs to generate chromopeptides. Compared with chromoproteins, chromopeptides exhibit a relatively simple molecular structure, flexible and adjustable photophysical properties, and a capability of programmable self-assembly. Chromopeptide self-assembly has attracted great attention as the resultant high-level architectures exhibit an ingenious combination of photofunctions and biofunctions. This review systematically summarizes recent advances in chromopeptide nanoarchitectonics with particular focus on the design strategy, assembly mechanism, and structure-function relationship. Among them, the effect of peptide sequences and the variation in photophysical performance are critically emphasized. On this basis, various applications, including biomedicine and artificial photosynthesis, are discussed together with the future prospects of chromopeptide nanoarchitectonics. This review will provide insights into chromopeptide nanoarchitectonics and corresponding materials with precise designs, flexible nanostructures and versatile functions. In addition, knowledge involving chromopeptide nanoarchitectonics may aid in the development of many other kinds of supramolecular biological materials and bioengineering techniques.Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life processes, such as photosynthesis. Inspired by chromoproteins, researchers integrate simple peptides and photosensitive molecular motifs to generate chromopeptides. Compared with chromoproteins, chromopeptides exhibit a relatively simple molecular structure, flexible and adjustable photophysical properties, and a capability of programmable self-assembly. Chromopeptide self-assembly has attracted great attention as the resultant high-level architectures exhibit an ingenious combination of photofunctions and biofunctions. This review systematically summarizes recent advances in chromopeptide nanoarchitectonics with particular focus on the design strategy, assembly mechanism, and structure-function relationship. Among them, the effect of peptide sequences and the variation in photophysical performance are critically emphasized. On this basis, various applications, including biomedicine and artificial photosynthesis, are discussed together with the future prospects of chromopeptide nanoarchitectonics. This review will provide insights into chromopeptide nanoarchitectonics and corresponding materials with precise designs, flexible nanostructures and versatile functions. In addition, knowledge involving chromopeptide nanoarchitectonics may aid in the development of many other kinds of supramolecular biological materials and bioengineering techniques. |
Author | Yan, Xuehai Chang, Rui Zhao, Luyang Li, Junbai Xing, Ruirui |
AuthorAffiliation | School of Chemical Engineering Chinese Academy of Sciences Interface and Chemical Thermodynamics Institute of Chemistry Center for Mesoscience, Institute of Process Engineering CAS Key Lab of Colloid Beijing National Laboratory for Molecular Sciences Institute of Process Engineering Chinese Academy of Sciences Beijing State Key Laboratory of Biochemical Engineering University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Biochemical Engineering – sequence: 0 name: Center for Mesoscience, Institute of Process Engineering – sequence: 0 name: Institute of Process Engineering – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: School of Chemical Engineering – sequence: 0 name: Interface and Chemical Thermodynamics Institute of Chemistry – sequence: 0 name: Chinese Academy of Sciences Beijing – sequence: 0 name: CAS Key Lab of Colloid – sequence: 0 name: Beijing National Laboratory for Molecular Sciences – sequence: 0 name: University of Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Rui surname: Chang fullname: Chang, Rui – sequence: 2 givenname: Luyang surname: Zhao fullname: Zhao, Luyang – sequence: 3 givenname: Ruirui surname: Xing fullname: Xing, Ruirui – sequence: 4 givenname: Junbai surname: Li fullname: Li, Junbai – sequence: 5 givenname: Xuehai surname: Yan fullname: Yan, Xuehai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36987746$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c9rFTEQB_AgFftavXhXFryIuJpfL9ntTZ7WCgUP6nnJTiZ9KdlkTXYP_e9N-1qF4mnm8JkvzMwJOYopIiEvGf3AqOg_Wg6FUqW3-ydkw6SirdRSHpENFVS1lDJ-TE5Kua4d04o_I8dC9Z3WUm3I_nyNsPgUTWhgn9OUZpwXb7GJJiaTYe8XhCVFD-WsmVJAWIPJjcXir-L7pmBwrSkFpzHcNCbaZvQppCsPNdDMc6jNbXx5Tp46Ewq-uK-n5Nf5l5-7i_by-9dvu0-XLUjRL20vrBBgQXGrnJHU8XFkwIBDp8GBNCMqdA6l6HjduAfJBB-t3KLeGuGcOCVvD7lzTr9XLMsw-QIYgomY1jJw3XPZa9azSt88otdpzfUSVXW0ItkJXtXre7WOE9phzn4y-WZ4uGEF9AAgp1IyugH8crf0ko0PA6PD7ZuGz3z34-5NF3Xk3aORh9T_4lcHnAv8df9-Lv4Ap-GeQQ |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2024_01_023 crossref_primary_10_1002_syst_202400068 crossref_primary_10_1021_acsnano_4c15587 crossref_primary_10_1016_j_isci_2023_107048 crossref_primary_10_1039_D4SC05575F crossref_primary_10_69565_jems_v3i3_392 crossref_primary_10_1016_j_cej_2025_159275 crossref_primary_10_1002_chem_202303204 crossref_primary_10_1002_cmdc_202300599 crossref_primary_10_1007_s40242_025_4241_7 crossref_primary_10_1021_acs_accounts_5c00043 crossref_primary_10_1016_j_microc_2024_112365 crossref_primary_10_1021_acs_accounts_3c00592 crossref_primary_10_1016_j_bioactmat_2023_09_020 crossref_primary_10_1002_adfm_202411179 crossref_primary_10_1016_j_ijbiomac_2024_136923 crossref_primary_10_1093_bulcsj_bcsj_20230224 crossref_primary_10_1002_adma_202305099 crossref_primary_10_1039_D4TB00365A crossref_primary_10_1021_jacs_4c00826 crossref_primary_10_1021_acs_chemmater_3c01291 crossref_primary_10_1360_SSC_2023_0155 crossref_primary_10_1002_ange_202314578 crossref_primary_10_1093_chemle_upae241 crossref_primary_10_1021_accountsmr_4c00172 crossref_primary_10_1038_s44303_024_00008_4 crossref_primary_10_1039_D3CP04556K crossref_primary_10_1039_D4NR00609G crossref_primary_10_3390_ma17235918 crossref_primary_10_1002_smll_202406171 crossref_primary_10_1021_jacs_3c09202 crossref_primary_10_1039_D3CC04952C crossref_primary_10_1002_adma_202401678 crossref_primary_10_3390_chemosensors11100528 crossref_primary_10_1021_acsanm_4c02397 crossref_primary_10_1021_acsami_4c18320 crossref_primary_10_35848_1347_4065_ad4ad8 crossref_primary_10_6023_A23050240 crossref_primary_10_1021_acsmaterialslett_3c00925 crossref_primary_10_1021_acs_nanolett_4c06452 crossref_primary_10_3390_molecules29133168 crossref_primary_10_1002_anie_202314578 crossref_primary_10_1007_s10904_024_03065_9 crossref_primary_10_1016_j_jconrel_2024_02_048 crossref_primary_10_1016_j_molstruc_2024_139229 crossref_primary_10_1021_acs_biomac_4c00141 crossref_primary_10_1021_acsmaterialslett_3c01337 crossref_primary_10_1039_D4TB01604A crossref_primary_10_3390_mi15020282 crossref_primary_10_1039_D4BM00893F crossref_primary_10_1021_acsami_3c15841 crossref_primary_10_1021_acs_biomac_3c01453 crossref_primary_10_1016_j_colsurfa_2025_136227 crossref_primary_10_1021_acs_biomac_3c01413 crossref_primary_10_1002_adtp_202300329 crossref_primary_10_1021_acsami_4c13792 crossref_primary_10_1039_D3TB02610H crossref_primary_10_1021_acsnano_4c08083 crossref_primary_10_1021_jacs_3c10779 crossref_primary_10_1016_j_colsurfa_2023_133029 crossref_primary_10_1021_jacs_4c10309 crossref_primary_10_1093_bulcsj_uoad001 crossref_primary_10_3390_molecules29194705 crossref_primary_10_1002_anbr_202400136 crossref_primary_10_1021_acs_analchem_4c01050 crossref_primary_10_1039_D4NH00371C crossref_primary_10_3390_molecules28237750 crossref_primary_10_1007_s11224_024_02361_x crossref_primary_10_1016_j_ccr_2023_215530 crossref_primary_10_3390_ma17040936 crossref_primary_10_1039_D3SM01151H crossref_primary_10_3390_ma17010271 crossref_primary_10_1039_D3NR05557D crossref_primary_10_1002_cphc_202400596 crossref_primary_10_1002_smll_202304675 crossref_primary_10_1016_j_cis_2025_103420 crossref_primary_10_1021_acs_bioconjchem_3c00432 crossref_primary_10_1021_acsnano_4c17702 |
Cites_doi | 10.1039/D0BM01467B 10.1016/j.biomaterials.2019.05.004 10.1016/S0092-8674(00)81402-6 10.1038/nbt874 10.1039/C6SC00737F 10.1002/sstr.202000068 10.31635/ccschem.019.20180017 10.1021/acs.bioconjchem.1c00123 10.1039/c5pp00038f 10.1021/cr9900331 10.1021/cr020622y 10.1021/jacs.6b11382 10.1038/nature08304 10.1046/j.1365-2796.2003.01228.x 10.1126/science.134.3478.556 10.1021/acsnano.7b09112 10.1021/jm801052f 10.1021/acsabm.0c00214 10.1002/anie.201506154 10.1002/adma.201900822 10.1021/ar00051a007 10.1021/cr400479b 10.1002/adfm.201606530 10.1002/1521-3765(20010601)7:11<2449::AID-CHEM24490>3.0.CO;2-A 10.1016/0169-409X(95)00023-Z 10.1021/jp902870f 10.1039/C6CS00176A 10.1016/S1572-1000(05)00007-4 10.1039/C6TB00406G 10.31635/ccschem.021.202100771 10.1002/anie.201103244 10.1002/adfm.201702122 10.1039/C6OB00099A 10.1002/adtp.201900048 10.1126/science.aab0214 10.1021/ja9627656 10.1038/s41589-020-00689-z 10.1002/pep2.24038 10.1021/acsami.7b04447 10.1021/jacs.8b04912 10.1038/nrc1821 10.3390/ijms23073577 10.1039/B915149B 10.1002/chem.201903322 10.1002/adfm.201804688 10.1016/j.cej.2021.129334 10.1016/j.bpc.2013.03.003 10.1021/cr9500500 10.1016/j.jconrel.2005.11.017 10.1007/s002329900201 10.1016/S0040-4039(97)00755-7 10.1021/jm301311c 10.1042/BJ20150942 10.1002/mabi.201800410 10.1002/adma.202200139 10.1021/nl201400z 10.1039/D0BM02201B 10.1016/j.bmc.2015.02.014 10.1039/C8BM00399H 10.1016/j.biomaterials.2020.119933 10.1039/C6CP01358A 10.1038/s41570-019-0095-1 10.1021/acs.nanolett.8b03174 10.1021/jacs.7b04394 10.1038/nmat4474 10.1039/c0cs90015j 10.1039/b915923c 10.1021/acsami.5b08637 10.1021/ja9704545 10.1038/nrc2167 10.1021/jm050893b 10.1080/17425247.2016.1182485 10.1002/adma.202006902 10.1002/adfm.201600170 10.1021/ja100936w 10.1039/C8NP00031J 10.1021/jacs.9b09935 10.1039/C4CS00247D 10.1021/acsnano.7b08215 10.1002/adma.201502454 10.1038/nbt943 10.1038/s41570-019-0129-8 10.1351/pac198658091193 10.1021/cr00011a005 10.1016/j.gee.2016.12.005 10.1016/0014-5793(90)81016-H 10.1177/1091581817697685 10.1002/anie.201704678 10.1021/ja972492u 10.1002/anie.201909825 10.1158/0008-5472.CAN-15-0471 10.1039/D0NH00680G 10.1021/acsami.8b11699 10.1002/adma.201502598 10.1039/C6CS00458J 10.1039/C6CP07450B 10.1038/nbt1220 10.1021/acsnano.9b01689 10.1021/jacs.0c11060 10.1021/acs.chemrev.7b00552 10.1246/bcsj.20180248 10.1021/acsami.7b06431 10.1002/anie.202008708 10.1038/s41557-022-01055-3 10.1021/ja056357q 10.1021/ja211035w 10.1002/anie.200301739 10.1016/S0140-6736(05)66544-0 10.1073/pnas.2231273100 10.1063/1.2195024 10.1039/b003786i 10.1002/adfm.201806877 10.1016/S0014-5793(01)02930-1 10.1021/jm301509n 10.1039/D0SC02937H 10.1002/pep2.24202 10.1002/adma.201605021 10.1016/S1535-6108(02)00238-6 10.1002/anie.201606795 10.1021/acsnano.0c06881 10.1126/science.1216210 10.1021/cr000045i 10.1021/cr00088a005 10.1021/cm025664h 10.1039/D0BM00782J 10.1021/acs.nanolett.9b03136 10.1038/s41570-019-0153-8 10.1021/bc0602578 10.1002/anie.201308792 10.1039/cs9972600169 10.1016/j.ccr.2020.213418 10.1002/adhm.201800380 10.1039/C2CS35123D 10.1021/ja057254a 10.1039/D0CS00215A 10.1016/j.biomaterials.2018.01.045 10.1021/ar800150g 10.1039/C8CS00618K 10.1002/anie.202000802 10.1039/C4CS00164H 10.1002/anie.201409149 10.1016/S0079-6107(97)00010-2 10.1039/D0CC07199D 10.1124/dmd.106.013763 10.1016/j.cocis.2017.12.004 10.1038/nchem.2122 10.1021/ja502615n 10.1021/acs.chemrev.0c01291 10.1021/acsnano.7b00216 10.1038/s41467-019-12848-5 10.1021/acs.chemmater.7b00966 10.1021/acs.inorgchem.7b00847 10.1016/j.biomaterials.2018.10.005 10.1007/s10540-006-9030-z 10.1038/nrc2403 10.1002/anie.200902672 10.1039/D1CC06355C 10.1016/j.biomaterials.2019.119494 10.1039/C8CS00001H 10.1039/cs9952400019 10.1038/nature06451 10.1002/adma.202100595 10.1021/ar00147a005 10.1016/j.apmt.2019.04.017 10.1039/C9CC06125H 10.1002/anie.201509810 10.1021/jacs.9b06142 10.1021/acsami.6b05795 10.3390/ijms222212122 10.1038/ncomms8984 10.1172/JCI114322 10.1016/j.cis.2015.09.001 10.1021/jm401653r 10.1021/acs.molpharmaceut.7b01064 10.1038/nchem.1145 10.1021/jacs.7b01588 10.1021/acs.jpclett.0c02138 10.1016/j.cej.2020.125995 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d2cs00675h |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 2712 |
ExternalDocumentID | 36987746 10_1039_D2CS00675H d2cs00675h |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 AAYXX AFRZK AKMSF ALUYA CITATION R56 CGR CUY CVF ECM EIF NPM YIN Z5M 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c439t-93d33cdc62d6fa40f2bb1c1c2c87cfc4abe6effe43826759c4132bd45e75a3ff3 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 00:52:24 EDT 2025 Sun Jun 29 12:48:18 EDT 2025 Wed Feb 19 02:23:47 EST 2025 Thu Apr 24 23:07:25 EDT 2025 Tue Jul 01 04:28:19 EDT 2025 Tue Dec 17 20:58:24 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c439t-93d33cdc62d6fa40f2bb1c1c2c87cfc4abe6effe43826759c4132bd45e75a3ff3 |
Notes | Rui Chang received her PhD degree from the Institute of Process Engineering (IPE), University of Chinese Academy of Sciences (UCAS), in 2022; then she started post-doctoral research at the Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS), under the supervision of Prof. Yan in the same year. Her research interests are mainly focused on peptide-based nanodrugs and their application in the area of antitumor theranostics, especially phototherapy and immunotherapy. Xuehai Yan is a full professor at the Institute of Process Engineering, Chinese Academy of Sciences (CAS). Currently, he is the deputy director of the State Key Laboratory of Biochemical Engineering and the Center of Mesoscience, IPE, CAS. His research interests are focused on peptide self-assembly and engineering, supramolecular colloids and crystals, phase evolution and dynamic transition, as well as cancer phototherapy and immunotherapy. Junbai Li is a professor at the Institute of Chemistry in the Chinese Academy of Sciences. His research interests include molecular biomimetics based on molecular assembly, reconstitution of motor proteins, self-assembly of dipeptides, biointerfaces, bioinspired materials, and nanostructure design. Ruirui Xing is currently an associate professor at the Institute of Process Engineering (IPE), CAS. Her research interests are focused on the design and self-assembly of functional peptides, supramolecular effects, nanomaterials and nanodrugs, and applications in the field of biomedicine. Luyang Zhao received his PhD degree in chemistry in 2016 from the University of Science and Technology Beijing. He then joined Prof. Xuehai Yan's group as a postdoc at the State Key Laboratory of Biochemical Engineering, IPE, CAS, and became an associated professor in 2019. His research interests are focused on the design of peptide-based bioactive molecules and self-assembling photosensitive materials. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0890-0340 0000-0001-9575-3125 |
OpenAccessLink | http://pubs.rsc.org/en/content/articlepdf/2023/CS/D2CS00675H |
PMID | 36987746 |
PQID | 2804974832 |
PQPubID | 2047503 |
PageCount | 25 |
ParticipantIDs | pubmed_primary_36987746 rsc_primary_d2cs00675h proquest_miscellaneous_2792497191 crossref_citationtrail_10_1039_D2CS00675H crossref_primary_10_1039_D2CS00675H proquest_journals_2804974832 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-24 |
PublicationDateYYYYMMDD | 2023-04-24 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (D2CS00675H/cit27/1) 2003; 21 Yu (D2CS00675H/cit29/1) 1996; 118 Wehner (D2CS00675H/cit35/1) 2020; 4 Song (D2CS00675H/cit98/1) 2018; 12 Overall (D2CS00675H/cit161/1) 2006; 6 Chang (D2CS00675H/cit93/1) 2022; 34 Adler-Abramovich (D2CS00675H/cit30/1) 2014; 43 Knop (D2CS00675H/cit71/1) 2010; 49 Qiu (D2CS00675H/cit120/1) 2021; 9 Song (D2CS00675H/cit31/1) 2021; 121 Zou (D2CS00675H/cit53/1) 2017; 139 Han (D2CS00675H/cit99/1) 2017; 11 Cheng (D2CS00675H/cit75/1) 2019; 19 Liu (D2CS00675H/cit170/1) 2017; 56 Naik (D2CS00675H/cit1/1) 2017; 117 Reed (D2CS00675H/cit81/1) 1988; 88 Markowska (D2CS00675H/cit67/1) 2021; 22 Jia (D2CS00675H/cit123/1) 2018; 7 Li (D2CS00675H/cit105/1) 2021; 33 Zhang (D2CS00675H/cit97/1) 2015; 27 Qin (D2CS00675H/cit38/1) 2015; 348 Carrion (D2CS00675H/cit68/1) 2017; 56 Wasielewski (D2CS00675H/cit166/1) 1992; 92 Luo (D2CS00675H/cit94/1) 2017; 27 Kelland (D2CS00675H/cit151/1) 2007; 7 Liu (D2CS00675H/cit133/1) 2014; 114 Solomon (D2CS00675H/cit47/1) 2017; 139 Cogdell (D2CS00675H/cit37/1) 1997; 68 Li (D2CS00675H/cit116/1) 2020; 11 Zhao (D2CS00675H/cit16/1) 2019; 92 Tshuva (D2CS00675H/cit134/1) 2004; 104 Chang (D2CS00675H/cit14/1) 2019; 2 Liu (D2CS00675H/cit169/1) 2016; 55 Liang (D2CS00675H/cit118/1) 2016; 45 Jiang (D2CS00675H/cit128/1) 2018; 10 Ulijn (D2CS00675H/cit25/1) 2010; 39 Dosselli (D2CS00675H/cit56/1) 2013; 56 You (D2CS00675H/cit15/1) 2015; 23 Zalipsky (D2CS00675H/cit70/1) 1995; 16 Huang (D2CS00675H/cit146/1) 2006; 128 Huang (D2CS00675H/cit110/1) 2018; 6 Armstrong (D2CS00675H/cit135/1) 1997; 26 Fry (D2CS00675H/cit46/1) 2020; 142 Zou (D2CS00675H/cit48/1) 2014; 53 Aoudia (D2CS00675H/cit34/1) 1997; 119 Gao (D2CS00675H/cit119/1) 2021; 417 Wang (D2CS00675H/cit132/1) 2020; 400 Sun (D2CS00675H/cit174/1) 2017; 19 Yin (D2CS00675H/cit3/1) 2008; 451 Liu (D2CS00675H/cit115/1) 2022; 58 Gurskaya (D2CS00675H/cit8/1) 2001; 507 Zhang (D2CS00675H/cit43/1) 2009; 113 Tirand (D2CS00675H/cit159/1) 2007; 35 Ariga (D2CS00675H/cit5/1) 2022; 23 Muller-Dethlefs (D2CS00675H/cit40/1) 2000; 100 Johnson (D2CS00675H/cit41/1) 2010; 132 Bard (D2CS00675H/cit165/1) 1995; 28 Chakroun (D2CS00675H/cit84/1) 2019; 13 Parrish-Novak (D2CS00675H/cit101/1) 2017; 36 Nikoloudakis (D2CS00675H/cit66/1) 2019; 55 Fidel (D2CS00675H/cit100/1) 2015; 75 Liu (D2CS00675H/cit147/1) 2018; 18 Pan (D2CS00675H/cit155/1) 2012; 134 Jin (D2CS00675H/cit111/1) 2017; 9 Reich (D2CS00675H/cit10/1) 1961; 134 Huffman (D2CS00675H/cit12/1) 1998; 120 Chen (D2CS00675H/cit148/1) 2020; 8 Sakamoto (D2CS00675H/cit45/1) 2001; 7 Rut (D2CS00675H/cit72/1) 2021; 17 Ariga (D2CS00675H/cit6/1) 2021; 6 D'Souza A (D2CS00675H/cit73/1) 2016; 13 Mao (D2CS00675H/cit63/1) 2018; 161 Biscaglia (D2CS00675H/cit39/1) 2018; 110 Zou (D2CS00675H/cit7/1) 2016; 28 Wang (D2CS00675H/cit114/1) 2012; 335 Koti (D2CS00675H/cit42/1) 2003; 15 Kovaric (D2CS00675H/cit52/1) 2006; 128 Hunter (D2CS00675H/cit80/1) 2004; 43 Li (D2CS00675H/cit106/1) 2020; 3 Ward (D2CS00675H/cit2/1) 2013; 42 Xing (D2CS00675H/cit103/1) 2019; 31 Lo (D2CS00675H/cit60/1) 2009; 52 Di Valentin (D2CS00675H/cit179/1) 2014; 136 Scholes (D2CS00675H/cit36/1) 2011; 3 Meyer (D2CS00675H/cit139/1) 1986; 58 Bonnett (D2CS00675H/cit21/1) 1995; 24 Hallahan (D2CS00675H/cit156/1) 2003; 3 Cheng (D2CS00675H/cit126/1) 2019; 16 Ethirajan (D2CS00675H/cit51/1) 2011; 40 Chen (D2CS00675H/cit86/1) 2021; 33 Raghuraman (D2CS00675H/cit152/1) 2007; 27 Lu (D2CS00675H/cit136/1) 2009; 460 Liu (D2CS00675H/cit19/1) 2016; 55 Li (D2CS00675H/cit61/1) 2016; 8 Liu (D2CS00675H/cit173/1) 2017; 11 Ellis (D2CS00675H/cit160/1) 2008; 8 Song (D2CS00675H/cit180/1) 2021; 143 Liu (D2CS00675H/cit143/1) 2019; 36 Luan (D2CS00675H/cit17/1) 2016; 14 Stefflova (D2CS00675H/cit109/1) 2007; 18 Early Breast Cancer Trialists’ Collaborative (D2CS00675H/cit149/1) 2005; 365 Zhou (D2CS00675H/cit121/1) 2017; 27 Abbas (D2CS00675H/cit23/1) 2017; 29 Zhou (D2CS00675H/cit59/1) 2015; 6 Liu (D2CS00675H/cit171/1) 2017; 2 Zhang (D2CS00675H/cit112/1) 2006; 24 Lei (D2CS00675H/cit141/1) 2020; 8 Zhou (D2CS00675H/cit57/1) 2016; 4 Zhao (D2CS00675H/cit91/1) 2019; 29 Liu (D2CS00675H/cit49/1) 2015; 54 Zhao (D2CS00675H/cit95/1) 2019; 1 Li (D2CS00675H/cit130/1) 2018; 15 Yuan (D2CS00675H/cit82/1) 2019; 3 Ranyuk (D2CS00675H/cit78/1) 2013; 56 Frederix (D2CS00675H/cit177/1) 2015; 7 Han (D2CS00675H/cit124/1) 2016; 26 Chen (D2CS00675H/cit87/1) 2015; 225 Liu (D2CS00675H/cit131/1) 2020; 242 Geier (D2CS00675H/cit18/1) 1997; 38 Sono (D2CS00675H/cit11/1) 1996; 96 Li (D2CS00675H/cit107/1) 2019; 25 Dosselli (D2CS00675H/cit54/1) 2014; 57 Liu (D2CS00675H/cit145/1) 2019; 48 Boman (D2CS00675H/cit142/1) 2003; 254 Wang (D2CS00675H/cit33/1) 2016; 45 Han (D2CS00675H/cit76/1) 2017; 9 Sibrian-Vazquez (D2CS00675H/cit58/1) 2006; 49 Liu (D2CS00675H/cit167/1) 2016; 18 Sun (D2CS00675H/cit89/1) 2015; 54 Kim (D2CS00675H/cit168/1) 2012; 51 Lal (D2CS00675H/cit144/1) 2008; 41 Xie (D2CS00675H/cit154/1) 2020; 49 Orosz (D2CS00675H/cit64/1) 2013; 177–178 Kasperkiewicz (D2CS00675H/cit77/1) 2017; 139 Yu (D2CS00675H/cit125/1) 2016; 7 Rosenblatt (D2CS00675H/cit13/1) 2003; 100 Webber (D2CS00675H/cit26/1) 2016; 15 Moret (D2CS00675H/cit55/1) 2015; 14 Castano (D2CS00675H/cit22/1) 2004; 1 Um (D2CS00675H/cit122/1) 2019; 224 Cheng (D2CS00675H/cit32/1) 2001; 101 Sakamoto (D2CS00675H/cit44/1) 2000 Li (D2CS00675H/cit83/1) 2020; 421 Matsumura (D2CS00675H/cit150/1) 1986; 46 Klibanov (D2CS00675H/cit74/1) 1990; 268 Ng (D2CS00675H/cit162/1) 2018; 28 Mendonca (D2CS00675H/cit50/1) 2021; 32 Tao (D2CS00675H/cit172/1) 2017; 29 Zhao (D2CS00675H/cit88/1) 2014; 26 Sun (D2CS00675H/cit104/1) 2020; 59 Schreiber (D2CS00675H/cit79/1) 2019; 3 Bechinger (D2CS00675H/cit153/1) 1997; 156 Li (D2CS00675H/cit24/1) 2018; 35 Ariga (D2CS00675H/cit4/1) 2020; 59 Cheng (D2CS00675H/cit129/1) 2019; 211 Chang (D2CS00675H/cit164/1) 2020; 1 Bullard (D2CS00675H/cit178/1) 2019; 141 Zhao (D2CS00675H/cit163/1) 2020; 113 Hessel (D2CS00675H/cit90/1) 2011; 11 Xu (D2CS00675H/cit113/1) 2006; 77 Abrahamse (D2CS00675H/cit20/1) 2016; 473 Kubas (D2CS00675H/cit138/1) 1988; 21 Batra (D2CS00675H/cit176/1) 2022; 14 Li (D2CS00675H/cit117/1) 2019; 48 Li (D2CS00675H/cit140/1) 2019; 19 Tirand (D2CS00675H/cit69/1) 2006; 111 Cho (D2CS00675H/cit62/1) 2020; 14 Ghosh (D2CS00675H/cit65/1) 2021; 57 Meneghin (D2CS00675H/cit175/1) 2020; 11 Li (D2CS00675H/cit108/1) 2015; 7 Li (D2CS00675H/cit137/1) 2018; 140 An (D2CS00675H/cit102/1) 2019; 10 Cheng (D2CS00675H/cit127/1) 2019; 188 Soker (D2CS00675H/cit157/1) 1998; 92 Verkhusha (D2CS00675H/cit9/1) 2004; 22 Connolly (D2CS00675H/cit158/1) 1989; 84 Fleming (D2CS00675H/cit28/1) 2014; 43 Zhao (D2CS00675H/cit85/1) 2010; 39 Zhao (D2CS00675H/cit96/1) 2021; 3 Zhao (D2CS00675H/cit92/1) 2020; 59 |
References_xml | – volume: 8 start-page: 6695 year: 2020 ident: D2CS00675H/cit141/1 publication-title: Biomater. Sci. doi: 10.1039/D0BM01467B – volume: 211 start-page: 14 year: 2019 ident: D2CS00675H/cit129/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.05.004 – volume: 92 start-page: 735 year: 1998 ident: D2CS00675H/cit157/1 publication-title: Cell doi: 10.1016/S0092-8674(00)81402-6 – volume: 21 start-page: 1171 year: 2003 ident: D2CS00675H/cit27/1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt874 – volume: 7 start-page: 4237 year: 2016 ident: D2CS00675H/cit125/1 publication-title: Chem. Sci. doi: 10.1039/C6SC00737F – volume: 1 start-page: 2000068 year: 2020 ident: D2CS00675H/cit164/1 publication-title: Small Struct. doi: 10.1002/sstr.202000068 – volume: 1 start-page: 173 year: 2019 ident: D2CS00675H/cit95/1 publication-title: CCS Chem. doi: 10.31635/ccschem.019.20180017 – volume: 32 start-page: 1067 year: 2021 ident: D2CS00675H/cit50/1 publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.1c00123 – volume: 14 start-page: 1238 year: 2015 ident: D2CS00675H/cit55/1 publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c5pp00038f – volume: 100 start-page: 143 year: 2000 ident: D2CS00675H/cit40/1 publication-title: Chem. Rev. doi: 10.1021/cr9900331 – volume: 104 start-page: 987 year: 2004 ident: D2CS00675H/cit134/1 publication-title: Chem. Rev. doi: 10.1021/cr020622y – volume: 139 start-page: 1921 year: 2017 ident: D2CS00675H/cit53/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11382 – volume: 460 start-page: 855 year: 2009 ident: D2CS00675H/cit136/1 publication-title: Nature doi: 10.1038/nature08304 – volume: 254 start-page: 197 year: 2003 ident: D2CS00675H/cit142/1 publication-title: J. Intern. Med. doi: 10.1046/j.1365-2796.2003.01228.x – volume: 134 start-page: 556 year: 1961 ident: D2CS00675H/cit10/1 publication-title: Science doi: 10.1126/science.134.3478.556 – volume: 12 start-page: 1978 year: 2018 ident: D2CS00675H/cit98/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b09112 – volume: 52 start-page: 358 year: 2009 ident: D2CS00675H/cit60/1 publication-title: J. Med. Chem. doi: 10.1021/jm801052f – volume: 3 start-page: 5463 year: 2020 ident: D2CS00675H/cit106/1 publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c00214 – volume: 54 start-page: 11526 year: 2015 ident: D2CS00675H/cit89/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201506154 – volume: 31 start-page: 1900822 year: 2019 ident: D2CS00675H/cit103/1 publication-title: Adv. Mater. doi: 10.1002/adma.201900822 – volume: 28 start-page: 141 year: 1995 ident: D2CS00675H/cit165/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar00051a007 – volume: 114 start-page: 4366 year: 2014 ident: D2CS00675H/cit133/1 publication-title: Chem. Rev. doi: 10.1021/cr400479b – volume: 27 start-page: 1606530 year: 2017 ident: D2CS00675H/cit121/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606530 – volume: 7 start-page: 2449 year: 2001 ident: D2CS00675H/cit45/1 publication-title: Chem. – Eur. J. doi: 10.1002/1521-3765(20010601)7:11<2449::AID-CHEM24490>3.0.CO;2-A – volume: 16 start-page: 157 year: 1995 ident: D2CS00675H/cit70/1 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/0169-409X(95)00023-Z – volume: 113 start-page: 14015 year: 2009 ident: D2CS00675H/cit43/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp902870f – volume: 45 start-page: 5589 year: 2016 ident: D2CS00675H/cit33/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00176A – volume: 1 start-page: 279 year: 2004 ident: D2CS00675H/cit22/1 publication-title: Photodiagn. Photodyn. Ther. doi: 10.1016/S1572-1000(05)00007-4 – volume: 4 start-page: 4855 year: 2016 ident: D2CS00675H/cit57/1 publication-title: J. Mater. Chem. B doi: 10.1039/C6TB00406G – volume: 3 start-page: 678 year: 2021 ident: D2CS00675H/cit96/1 publication-title: CCS Chem. doi: 10.31635/ccschem.021.202100771 – volume: 51 start-page: 517 year: 2012 ident: D2CS00675H/cit168/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201103244 – volume: 27 start-page: 1702122 year: 2017 ident: D2CS00675H/cit94/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702122 – volume: 14 start-page: 2985 year: 2016 ident: D2CS00675H/cit17/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C6OB00099A – volume: 2 start-page: 1900048 year: 2019 ident: D2CS00675H/cit14/1 publication-title: Adv. Therap. doi: 10.1002/adtp.201900048 – volume: 348 start-page: 989 year: 2015 ident: D2CS00675H/cit38/1 publication-title: Science doi: 10.1126/science.aab0214 – volume: 118 start-page: 12515 year: 1996 ident: D2CS00675H/cit29/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9627656 – volume: 17 start-page: 222 year: 2021 ident: D2CS00675H/cit72/1 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-00689-z – volume: 110 start-page: e24038 year: 2018 ident: D2CS00675H/cit39/1 publication-title: Pept. Sci. doi: 10.1002/pep2.24038 – volume: 9 start-page: 16043 year: 2017 ident: D2CS00675H/cit76/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04447 – volume: 140 start-page: 10794 year: 2018 ident: D2CS00675H/cit137/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04912 – volume: 6 start-page: 227 year: 2006 ident: D2CS00675H/cit161/1 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1821 – volume: 23 start-page: 3577 year: 2022 ident: D2CS00675H/cit5/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23073577 – volume: 40 start-page: 340 year: 2011 ident: D2CS00675H/cit51/1 publication-title: Chem. Soc. Rev. doi: 10.1039/B915149B – volume: 25 start-page: 13429 year: 2019 ident: D2CS00675H/cit107/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201903322 – volume: 46 start-page: 6387 year: 1986 ident: D2CS00675H/cit150/1 publication-title: Cancer Res. – volume: 28 start-page: 1804688 year: 2018 ident: D2CS00675H/cit162/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804688 – volume: 417 start-page: 129334 year: 2021 ident: D2CS00675H/cit119/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129334 – volume: 177–178 start-page: 14 year: 2013 ident: D2CS00675H/cit64/1 publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2013.03.003 – volume: 96 start-page: 2841 year: 1996 ident: D2CS00675H/cit11/1 publication-title: Chem. Rev. doi: 10.1021/cr9500500 – volume: 111 start-page: 153 year: 2006 ident: D2CS00675H/cit69/1 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2005.11.017 – volume: 156 start-page: 197 year: 1997 ident: D2CS00675H/cit153/1 publication-title: J. Membr. Biol. doi: 10.1007/s002329900201 – volume: 38 start-page: 3821 year: 1997 ident: D2CS00675H/cit18/1 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(97)00755-7 – volume: 56 start-page: 1520 year: 2013 ident: D2CS00675H/cit78/1 publication-title: J. Med. Chem. doi: 10.1021/jm301311c – volume: 473 start-page: 347 year: 2016 ident: D2CS00675H/cit20/1 publication-title: Biochem. J. doi: 10.1042/BJ20150942 – volume: 26 start-page: 1445 year: 2014 ident: D2CS00675H/cit88/1 publication-title: Prog. Chem. – volume: 19 start-page: 1800410 year: 2019 ident: D2CS00675H/cit75/1 publication-title: Macromol. Biosci. doi: 10.1002/mabi.201800410 – volume: 34 start-page: 2200139 year: 2022 ident: D2CS00675H/cit93/1 publication-title: Adv. Mater. doi: 10.1002/adma.202200139 – volume: 11 start-page: 2560 year: 2011 ident: D2CS00675H/cit90/1 publication-title: Nano Lett. doi: 10.1021/nl201400z – volume: 9 start-page: 3433 year: 2021 ident: D2CS00675H/cit120/1 publication-title: Biomater. Sci. doi: 10.1039/D0BM02201B – volume: 23 start-page: 1453 year: 2015 ident: D2CS00675H/cit15/1 publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2015.02.014 – volume: 6 start-page: 2925 year: 2018 ident: D2CS00675H/cit110/1 publication-title: Biomater. Sci. doi: 10.1039/C8BM00399H – volume: 242 start-page: 119933 year: 2020 ident: D2CS00675H/cit131/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.119933 – volume: 18 start-page: 16738 year: 2016 ident: D2CS00675H/cit167/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP01358A – volume: 3 start-page: 393 year: 2019 ident: D2CS00675H/cit79/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0095-1 – volume: 18 start-page: 6577 year: 2018 ident: D2CS00675H/cit147/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03174 – volume: 139 start-page: 10115 year: 2017 ident: D2CS00675H/cit77/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04394 – volume: 15 start-page: 13 year: 2016 ident: D2CS00675H/cit26/1 publication-title: Nat. Mater. doi: 10.1038/nmat4474 – volume: 39 start-page: 3349 year: 2010 ident: D2CS00675H/cit25/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs90015j – volume: 39 start-page: 3480 year: 2010 ident: D2CS00675H/cit85/1 publication-title: Chem. Soc. Rev. doi: 10.1039/b915923c – volume: 7 start-page: 28319 year: 2015 ident: D2CS00675H/cit108/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08637 – volume: 120 start-page: 6183 year: 1998 ident: D2CS00675H/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9704545 – volume: 7 start-page: 573 year: 2007 ident: D2CS00675H/cit151/1 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2167 – volume: 49 start-page: 1364 year: 2006 ident: D2CS00675H/cit58/1 publication-title: J. Med. Chem. doi: 10.1021/jm050893b – volume: 13 start-page: 1257 year: 2016 ident: D2CS00675H/cit73/1 publication-title: Expert Opin. Drug Delivery doi: 10.1080/17425247.2016.1182485 – volume: 33 start-page: 2006902 year: 2021 ident: D2CS00675H/cit86/1 publication-title: Adv. Mater. doi: 10.1002/adma.202006902 – volume: 26 start-page: 4351 year: 2016 ident: D2CS00675H/cit124/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600170 – volume: 132 start-page: 6498 year: 2010 ident: D2CS00675H/cit41/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja100936w – volume: 36 start-page: 573 year: 2019 ident: D2CS00675H/cit143/1 publication-title: Nat. Prod. Rep. doi: 10.1039/C8NP00031J – volume: 142 start-page: 233 year: 2020 ident: D2CS00675H/cit46/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09935 – volume: 43 start-page: 8150 year: 2014 ident: D2CS00675H/cit28/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00247D – volume: 11 start-page: 12840 year: 2017 ident: D2CS00675H/cit173/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b08215 – volume: 28 start-page: 1031 year: 2016 ident: D2CS00675H/cit7/1 publication-title: Adv. Mater. doi: 10.1002/adma.201502454 – volume: 22 start-page: 289 year: 2004 ident: D2CS00675H/cit9/1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt943 – volume: 3 start-page: 567 year: 2019 ident: D2CS00675H/cit82/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0129-8 – volume: 58 start-page: 1193 year: 1986 ident: D2CS00675H/cit139/1 publication-title: Pure Appl. Chem. doi: 10.1351/pac198658091193 – volume: 92 start-page: 435 year: 1992 ident: D2CS00675H/cit166/1 publication-title: Chem. Rev. doi: 10.1021/cr00011a005 – volume: 2 start-page: 58 year: 2017 ident: D2CS00675H/cit171/1 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2016.12.005 – volume: 268 start-page: 235 year: 1990 ident: D2CS00675H/cit74/1 publication-title: FEBS Lett. doi: 10.1016/0014-5793(90)81016-H – volume: 36 start-page: 104 year: 2017 ident: D2CS00675H/cit101/1 publication-title: Int. J. Toxicol. doi: 10.1177/1091581817697685 – volume: 56 start-page: 7876 year: 2017 ident: D2CS00675H/cit170/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201704678 – volume: 119 start-page: 12859 year: 1997 ident: D2CS00675H/cit34/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja972492u – volume: 59 start-page: 3793 year: 2020 ident: D2CS00675H/cit92/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909825 – volume: 75 start-page: 4283 year: 2015 ident: D2CS00675H/cit100/1 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-0471 – volume: 6 start-page: 364 year: 2021 ident: D2CS00675H/cit6/1 publication-title: Nanoscale Horiz. doi: 10.1039/D0NH00680G – volume: 10 start-page: 31674 year: 2018 ident: D2CS00675H/cit128/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11699 – volume: 27 start-page: 6125 year: 2015 ident: D2CS00675H/cit97/1 publication-title: Adv. Mater. doi: 10.1002/adma.201502598 – volume: 45 start-page: 6250 year: 2016 ident: D2CS00675H/cit118/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00458J – volume: 19 start-page: 562 year: 2017 ident: D2CS00675H/cit174/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP07450B – volume: 24 start-page: 848 year: 2006 ident: D2CS00675H/cit112/1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1220 – volume: 13 start-page: 7780 year: 2019 ident: D2CS00675H/cit84/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b01689 – volume: 143 start-page: 382 year: 2021 ident: D2CS00675H/cit180/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c11060 – volume: 117 start-page: 12581 year: 2017 ident: D2CS00675H/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00552 – volume: 92 start-page: 70 year: 2019 ident: D2CS00675H/cit16/1 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.20180248 – volume: 9 start-page: 25755 year: 2017 ident: D2CS00675H/cit111/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06431 – volume: 59 start-page: 20582 year: 2020 ident: D2CS00675H/cit104/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202008708 – volume: 14 start-page: 1427 year: 2022 ident: D2CS00675H/cit176/1 publication-title: Nat. Chem. doi: 10.1038/s41557-022-01055-3 – volume: 128 start-page: 4166 year: 2006 ident: D2CS00675H/cit52/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056357q – volume: 134 start-page: 5722 year: 2012 ident: D2CS00675H/cit155/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211035w – volume: 43 start-page: 5310 year: 2004 ident: D2CS00675H/cit80/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200301739 – volume: 365 start-page: 1687 year: 2005 ident: D2CS00675H/cit149/1 publication-title: Lancet doi: 10.1016/S0140-6736(05)66544-0 – volume: 100 start-page: 13140 year: 2003 ident: D2CS00675H/cit13/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2231273100 – volume: 77 start-page: 041101 year: 2006 ident: D2CS00675H/cit113/1 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2195024 – start-page: 1741 year: 2000 ident: D2CS00675H/cit44/1 publication-title: Chem. Commun. doi: 10.1039/b003786i – volume: 29 start-page: 1806877 year: 2019 ident: D2CS00675H/cit91/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806877 – volume: 507 start-page: 16 year: 2001 ident: D2CS00675H/cit8/1 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02930-1 – volume: 56 start-page: 1052 year: 2013 ident: D2CS00675H/cit56/1 publication-title: J. Med. Chem. doi: 10.1021/jm301509n – volume: 11 start-page: 8644 year: 2020 ident: D2CS00675H/cit116/1 publication-title: Chem. Sci. doi: 10.1039/D0SC02937H – volume: 113 start-page: e24202 year: 2020 ident: D2CS00675H/cit163/1 publication-title: Pept. Sci. doi: 10.1002/pep2.24202 – volume: 29 start-page: 1605021 year: 2017 ident: D2CS00675H/cit23/1 publication-title: Adv. Mater. doi: 10.1002/adma.201605021 – volume: 3 start-page: 63 year: 2003 ident: D2CS00675H/cit156/1 publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00238-6 – volume: 55 start-page: 12503 year: 2016 ident: D2CS00675H/cit169/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201606795 – volume: 14 start-page: 15793 year: 2020 ident: D2CS00675H/cit62/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c06881 – volume: 335 start-page: 1458 year: 2012 ident: D2CS00675H/cit114/1 publication-title: Science doi: 10.1126/science.1216210 – volume: 101 start-page: 3219 year: 2001 ident: D2CS00675H/cit32/1 publication-title: Chem. Rev. doi: 10.1021/cr000045i – volume: 88 start-page: 899 year: 1988 ident: D2CS00675H/cit81/1 publication-title: Chem. Rev. doi: 10.1021/cr00088a005 – volume: 15 start-page: 369 year: 2003 ident: D2CS00675H/cit42/1 publication-title: Chem. Mater. doi: 10.1021/cm025664h – volume: 8 start-page: 4447 year: 2020 ident: D2CS00675H/cit148/1 publication-title: Biomater. Sci. doi: 10.1039/D0BM00782J – volume: 19 start-page: 7965 year: 2019 ident: D2CS00675H/cit140/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03136 – volume: 4 start-page: 38 year: 2020 ident: D2CS00675H/cit35/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0153-8 – volume: 18 start-page: 379 year: 2007 ident: D2CS00675H/cit109/1 publication-title: Bioconjugate Chem. doi: 10.1021/bc0602578 – volume: 53 start-page: 2366 year: 2014 ident: D2CS00675H/cit48/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201308792 – volume: 26 start-page: 169 year: 1997 ident: D2CS00675H/cit135/1 publication-title: Chem. Soc. Rev. doi: 10.1039/cs9972600169 – volume: 421 start-page: 213418 year: 2020 ident: D2CS00675H/cit83/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213418 – volume: 7 start-page: 1800380 year: 2018 ident: D2CS00675H/cit123/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201800380 – volume: 42 start-page: 1619 year: 2013 ident: D2CS00675H/cit2/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35123D – volume: 128 start-page: 2115 year: 2006 ident: D2CS00675H/cit146/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057254a – volume: 49 start-page: 8065 year: 2020 ident: D2CS00675H/cit154/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00215A – volume: 161 start-page: 306 year: 2018 ident: D2CS00675H/cit63/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.01.045 – volume: 41 start-page: 1842 year: 2008 ident: D2CS00675H/cit144/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar800150g – volume: 48 start-page: 2053 year: 2019 ident: D2CS00675H/cit145/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00618K – volume: 59 start-page: 15424 year: 2020 ident: D2CS00675H/cit4/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202000802 – volume: 43 start-page: 6881 year: 2014 ident: D2CS00675H/cit30/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00164H – volume: 54 start-page: 500 year: 2015 ident: D2CS00675H/cit49/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409149 – volume: 68 start-page: 1 year: 1997 ident: D2CS00675H/cit37/1 publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/S0079-6107(97)00010-2 – volume: 57 start-page: 1603 year: 2021 ident: D2CS00675H/cit65/1 publication-title: Chem. Commun. doi: 10.1039/D0CC07199D – volume: 35 start-page: 806 year: 2007 ident: D2CS00675H/cit159/1 publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.106.013763 – volume: 35 start-page: 17 year: 2018 ident: D2CS00675H/cit24/1 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2017.12.004 – volume: 7 start-page: 30 year: 2015 ident: D2CS00675H/cit177/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2122 – volume: 136 start-page: 6582 year: 2014 ident: D2CS00675H/cit179/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502615n – volume: 121 start-page: 13936 year: 2021 ident: D2CS00675H/cit31/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01291 – volume: 11 start-page: 3178 year: 2017 ident: D2CS00675H/cit99/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b00216 – volume: 10 start-page: 4861 year: 2019 ident: D2CS00675H/cit102/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12848-5 – volume: 29 start-page: 4454 year: 2017 ident: D2CS00675H/cit172/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00966 – volume: 56 start-page: 7210 year: 2017 ident: D2CS00675H/cit68/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00847 – volume: 188 start-page: 1 year: 2019 ident: D2CS00675H/cit127/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.10.005 – volume: 27 start-page: 189 year: 2007 ident: D2CS00675H/cit152/1 publication-title: Biosci. Rep. doi: 10.1007/s10540-006-9030-z – volume: 8 start-page: 579 year: 2008 ident: D2CS00675H/cit160/1 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2403 – volume: 49 start-page: 6288 year: 2010 ident: D2CS00675H/cit71/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200902672 – volume: 58 start-page: 2247 year: 2022 ident: D2CS00675H/cit115/1 publication-title: Chem. Commun. doi: 10.1039/D1CC06355C – volume: 224 start-page: 119494 year: 2019 ident: D2CS00675H/cit122/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119494 – volume: 48 start-page: 38 year: 2019 ident: D2CS00675H/cit117/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00001H – volume: 24 start-page: 19 year: 1995 ident: D2CS00675H/cit21/1 publication-title: Chem. Soc. Rev. doi: 10.1039/cs9952400019 – volume: 451 start-page: 318 year: 2008 ident: D2CS00675H/cit3/1 publication-title: Nature doi: 10.1038/nature06451 – volume: 33 start-page: 2100595 year: 2021 ident: D2CS00675H/cit105/1 publication-title: Adv. Mater. doi: 10.1002/adma.202100595 – volume: 21 start-page: 120 year: 1988 ident: D2CS00675H/cit138/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar00147a005 – volume: 16 start-page: 120 year: 2019 ident: D2CS00675H/cit126/1 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2019.04.017 – volume: 55 start-page: 14103 year: 2019 ident: D2CS00675H/cit66/1 publication-title: Chem. Commun. doi: 10.1039/C9CC06125H – volume: 55 start-page: 3036 year: 2016 ident: D2CS00675H/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201509810 – volume: 141 start-page: 14707 year: 2019 ident: D2CS00675H/cit178/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06142 – volume: 8 start-page: 17936 year: 2016 ident: D2CS00675H/cit61/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05795 – volume: 22 start-page: 12122 year: 2021 ident: D2CS00675H/cit67/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222212122 – volume: 6 start-page: 7984 year: 2015 ident: D2CS00675H/cit59/1 publication-title: Nat. Commun. doi: 10.1038/ncomms8984 – volume: 84 start-page: 1470 year: 1989 ident: D2CS00675H/cit158/1 publication-title: J. Clin. Invest. doi: 10.1172/JCI114322 – volume: 225 start-page: 177 year: 2015 ident: D2CS00675H/cit87/1 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2015.09.001 – volume: 57 start-page: 1403 year: 2014 ident: D2CS00675H/cit54/1 publication-title: J. Med. Chem. doi: 10.1021/jm401653r – volume: 15 start-page: 1505 year: 2018 ident: D2CS00675H/cit130/1 publication-title: Mol. Pharmaceutics doi: 10.1021/acs.molpharmaceut.7b01064 – volume: 3 start-page: 763 year: 2011 ident: D2CS00675H/cit36/1 publication-title: Nat. Chem. doi: 10.1038/nchem.1145 – volume: 139 start-page: 8497 year: 2017 ident: D2CS00675H/cit47/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01588 – volume: 11 start-page: 7972 year: 2020 ident: D2CS00675H/cit175/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02138 – volume: 400 start-page: 125995 year: 2020 ident: D2CS00675H/cit132/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125995 |
SSID | ssj0011762 |
Score | 2.6475785 |
SecondaryResourceType | review_article |
Snippet | Chromoproteins are a class of delicate natural compounds that elegantly complex photosensitive species with proteins and play a central role in important life... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2688 |
SubjectTerms | Amino Acid Sequence Bioengineering Biological materials Computer architecture Molecular Structure Nanostructures - chemistry Peptides Peptides - chemistry Photosensitivity Photosynthesis Proteins Self-assembly Sequences |
Title | Functional chromopeptide nanoarchitectonics: molecular design, self-assembly and biological applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36987746 https://www.proquest.com/docview/2804974832 https://www.proquest.com/docview/2792497191 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoAL4msQGCgILmiEJXZiJ9ymsqmgwgE6qbfKX1ErdenUNgf4B_i3eY4dJ6U7DC5R5TpJ6_fze8_vE6G3lIlY6pJEGmcySmUpIyGlSQTOlUxNObzGpvv1Gx1dpl-m2XQw-N2LWqq34oP8dWNeyf9QFcaAriZL9h8o6x8KA_AZ6AtXoDBcb0XjCxBKzpYn5yau7trEqCh9UvFq5V0EpvhtE_h21bbCPVFN3IZZ3o1elhEo0PpKLG0pJluWyRYR6Hm3-1qsrzLQxny6mqa9WAHLQr7Xi55lurHKjuuf3ElLGJ0u_MR1N3e8sAkjleCLvlkCE-NhsdnQbTqWMVXELkZaW-6a0jhKmS342LLfDPdglvd5KbUN_5xcxsw-a4_nx8SUTP2Ehz-M6M1GnWRrvfl_CTwfhtg44Ekx6-69gw4xnDeAYR6enU8-j71DKmHUOaTsv2or3ZLitLt7V7fZO7CA-rJu28o06svkAbrvzh3hmQXRQzTQ1SN0d9i2-3uM5h2Ywh0whftg-hh6KIUWSu_DHSCFAKSwA1LYB9ITdHlxPhmOIteGI4LNWmyjgihCpJIUK1ryNC6xEIlMJJY5g72dcqGpCT4yLmVYhUKCXoSFSjPNMk7Kkhyhg2pV6WcopLLkCheKCdAKteQ85gmH9WYsSUVGigC9axdwJl2NetMqZTnbJ1WA3vi517Yyy42zjls6zNzO3cxwDudiloIwC9Br_zWst3GW8UqvapjDjGWCJUUSoKeWfv41hBY5HJtogI6AoH5YYblp3jp_fqvf9gLd63bOMTrYrmv9ElTcrXjl4PcHrWGprQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+chromopeptide+nanoarchitectonics%3A+molecular+design%2C+self-assembly+and+biological+applications&rft.jtitle=Chemical+Society+reviews&rft.au=Chang%2C+Rui&rft.au=Zhao%2C+Luyang&rft.au=Xing%2C+Ruirui&rft.au=Li%2C+Junbai&rft.date=2023-04-24&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=52&rft.issue=8&rft.spage=2688&rft.epage=2712&rft_id=info:doi/10.1039%2FD2CS00675H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2CS00675H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |