Purification and properties of 2'-hydroxybenzalpyruvate aldolase from a bacterium that degrades naphthalenesulfonates

2'-Hydroxybenzalpyruvate aldolase catalyzes the cleavage of 2'-hydroxybenzalpyruvate to salicylaldehyde and pyruvate. This reaction is part of the degradative pathways for naphthalene and naphthalenesulfonates by bacteria. 2'-Hydroxybenzalpyruvate aldolase has been purified to homogen...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 268; no. 13; pp. 9484 - 9489
Main Authors KUHM, A. E, KNACKMUSS, H.-J, STOLZ, A
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Society for Biochemistry and Molecular Biology 05.05.1993
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:2'-Hydroxybenzalpyruvate aldolase catalyzes the cleavage of 2'-hydroxybenzalpyruvate to salicylaldehyde and pyruvate. This reaction is part of the degradative pathways for naphthalene and naphthalenesulfonates by bacteria. 2'-Hydroxybenzalpyruvate aldolase has been purified to homogeneity from a bacterium that degrades naphthalenesulfonates (strain BN6). The enzyme has a molecular weight of about 120,000 and is composed of identical subunits with a molecular weight of about 38,500. Thus the enzyme appears to exist as a trimeric oligomer. The NH2-terminal amino acid sequence did not show significant homology to other published amino acid sequences. Extensive loss of enzyme activity occurred when the enzyme was incubated with 2'-hydroxybenzalpyruvate in the presence of sodium borhydride. This suggested the intermediate formation of a stable Schiff base between enzyme and substrate. 2'-Hydroxybenzalpyruvate aldolase was inhibited by p-chloromercuribenzoate and by the reaction product salicylaldehyde. The enzyme converted 2'-hydroxybenzalpyruvate, 2',4'- and 2',6'-dihydroxybenzalpyruvate.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)98376-6