Molecular mechanisms of apoptosis. Structure of cytochrome c-cardiolipin complex

One of the functions of cytochrome c in living cells is the initiation of apoptosis by catalyzing lipid peroxidation in the inner mitochondrial membrane, which involves cytochrome c bound with acidic lipids, especially cardiolipin. In this paper the results of studies of cytochrome c -cardiolipin co...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Moscow) Vol. 78; no. 10; pp. 1086 - 1097
Main Authors Vladimirov, Yu. A., Proskurnina, E. V., Alekseev, A. V.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.10.2013
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:One of the functions of cytochrome c in living cells is the initiation of apoptosis by catalyzing lipid peroxidation in the inner mitochondrial membrane, which involves cytochrome c bound with acidic lipids, especially cardiolipin. In this paper the results of studies of cytochrome c -cardiolipin complex structure carried out by different authors mainly on unilamellar cardiolipin-containing phospholipid liposomes are critically analyzed. The principal conclusion from the published papers is that cytochrome c -cardiolipin complex is formed by attachment of a cytochrome c molecule to the membrane surface via electrostatic interactions and the subsequent penetration of one of the fatty-acid cardiolipin chains into the protein globule, this being associated with hydrophobic interactions that break the >Fe…S(Met80) coordinate bond and giving rise to appearance of cytochrome c peroxidase activity. Nevertheless, according to data obtained in our laboratory, cytochrome c and cardiolipin form spherical nanoparticles in which protein is surrounded by a monolayer of cardiolipin molecules. Under the action of cooperative forces, the protein in the globule expands greatly in volume, its conformation is modified, and the protein becomes a peroxidase. In extended membranes, such as giant monolayer liposomes, and very likely in biological membranes, the formation of nanospheres of cytochrome c -cardiolipin complex causes fusion of membrane sections and dramatic chaotization of the whole membrane structure. The subsequent disintegration of the outer mitochondrial membrane is accompanied by cytochrome c release from the mitochondria and triggering of a cascade of programmed cell death reactions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0006-2979
1608-3040
DOI:10.1134/S0006297913100027