Predicting the Fate of Bisphenol A During Electrochemical Oxidation: A Simple Semiempirical Method Based on the Concentration Profile of Hydroxyl Radicals

The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 26; no. 10; p. 4785
Main Authors Ječmenica Dučić, Marija, Vasić Anićijević, Dragana, Aćimović, Danka, Švorc, Ľubomír, Bugarski, Branko, Pešić, Radojica, Brdarić, Tanja
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.05.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H2O2 measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm2. Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10–20 mA/cm2). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems.
AbstractList The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H2O2 measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm2. Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10–20 mA/cm2). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems.
The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H2O2 measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm2. Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10-20 mA/cm2). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems.The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H2O2 measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm2. Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10-20 mA/cm2). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems.
The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H O measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm . Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10-20 mA/cm ). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems.
The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H[sub.2]O[sub.2] measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm[sup.2]. Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10–20 mA/cm[sup.2]). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems.
The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H 2 O 2 measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm 2 . Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10–20 mA/cm 2 ). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems.
Audience Academic
Author Aćimović, Danka
Švorc, Ľubomír
Vasić Anićijević, Dragana
Brdarić, Tanja
Bugarski, Branko
Ječmenica Dučić, Marija
Pešić, Radojica
AuthorAffiliation 3 Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
2 Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
1 Department of Physical Chemistry, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12–14, 11000 Belgrade, Serbia
AuthorAffiliation_xml – name: 3 Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
– name: 1 Department of Physical Chemistry, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12–14, 11000 Belgrade, Serbia
– name: 2 Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
Author_xml – sequence: 1
  givenname: Marija
  orcidid: 0000-0002-6437-519X
  surname: Ječmenica Dučić
  fullname: Ječmenica Dučić, Marija
– sequence: 2
  givenname: Dragana
  orcidid: 0000-0003-0566-3244
  surname: Vasić Anićijević
  fullname: Vasić Anićijević, Dragana
– sequence: 3
  givenname: Danka
  orcidid: 0000-0001-7506-9684
  surname: Aćimović
  fullname: Aćimović, Danka
– sequence: 4
  givenname: Ľubomír
  orcidid: 0000-0002-9588-8609
  surname: Švorc
  fullname: Švorc, Ľubomír
– sequence: 5
  givenname: Branko
  surname: Bugarski
  fullname: Bugarski, Branko
– sequence: 6
  givenname: Radojica
  orcidid: 0000-0002-5547-7450
  surname: Pešić
  fullname: Pešić, Radojica
– sequence: 7
  givenname: Tanja
  orcidid: 0000-0003-2547-7123
  surname: Brdarić
  fullname: Brdarić, Tanja
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40429926$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gxhlZ4sKBLf7Kh7mg7dJSpKJWFM6WY092vUrsYCeo-1f4tTi7pWwRsqWxNM-847Hf4-zAeQdZ9pLgU8YEfmfXXaQFwbys8ifZEeGUzjAuyoO982F2HOMaY8poLp5lhxxzKgQtjrJfNwGM1YN1SzSsAF2oAZBv0JmN_Qqcb9EcfRzDlD5vQQ_B6xV0VqsWXd9Zowbr3fvE3NqubwHdphx0vQ1b4gsMK2_QmYpgkHfbBgvvNLghbCvRTfCNbbcdLzcm-LtNi74qM1XH59nTJgV4cR9Psu8X598Wl7Or60-fF_OrmeZMDLOcc1WWuWI1pEmFLgXHtBQUSFMrk3NDgPIqbwjVrCZ1QRqVK2WEUQpqbBQ7yT7sdPux7sDsbtfKPthOhY30ysrHGWdXcul_SkLJtKuk8OZeIfgfI8RBdjZqaFvlwI9RMkpoWWFRkIS-_gdd-zG4NN9EESHKgtK_1FK1IK1rfGqsJ1E5rzhjZSWKPFGn_6HSMtMPJZdMT_u44NX-pA8j_rFDAt7uAB18jAGaB4RgOblN7ruN_QZ05Mhr
Cites_doi 10.1016/j.watres.2019.115394
10.1016/0021-9517(90)90269-P
10.1021/jacs.2c06278
10.1016/j.jwpe.2022.103416
10.1016/j.envpol.2017.09.006
10.1016/j.chemosphere.2022.137169
10.1016/j.heliyon.2024.e30402
10.1016/j.watres.2024.122023
10.1016/j.cclet.2025.111008
10.1016/j.jece.2025.116243
10.1016/j.watres.2006.12.006
10.1016/j.talanta.2007.07.008
10.3390/molecules27165203
10.1007/BF01582221
10.1016/0771-050X(80)90013-3
10.1016/j.watres.2022.118425
10.1016/j.watres.2008.02.027
10.1021/acs.est.2c00464
10.1021/acsmeasuresciau.2c00049
10.1038/s41598-021-95083-7
10.1021/acsestengg.2c00318
10.1016/j.jhazmat.2019.121789
10.1137/S1064827594276424
10.1021/ba-1968-0081.ch016
10.1021/acs.accounts.4c00021
10.1021/acsestengg.2c00337
10.1007/s11356-014-3042-1
10.1016/j.jenvman.2024.123558
10.1016/S1010-6030(02)00265-4
10.1016/j.cej.2020.124124
10.1016/j.jece.2016.05.034
10.1016/j.molliq.2018.01.154
10.1016/j.watres.2007.07.046
10.1007/s11356-025-35992-6
10.1021/es034011e
10.1007/s10311-024-01772-w
10.1080/01919512.2013.836447
10.1016/j.cej.2013.01.064
10.1016/j.jwpe.2020.101636
10.3390/coatings14081060
10.1007/s11356-023-27545-6
10.1002/asia.202400105
10.1016/j.watres.2009.01.026
10.1016/j.chemosphere.2013.02.023
10.1016/j.watres.2022.119464
10.1016/j.apcatb.2014.05.007
10.1016/j.jece.2024.113778
10.1016/j.watres.2018.03.002
10.1080/10934529.2024.2339171
10.1021/acs.jpca.4c07849
10.1021/jacs.5b13376
10.1063/1.555805
10.1016/j.jece.2024.114245
10.1016/j.chemosphere.2019.124929
10.1137/0806023
10.1016/j.apcatb.2019.117902
10.1007/s12678-013-0150-5
10.1016/j.jece.2024.113369
10.1039/an9800500950
10.1016/j.cej.2013.05.064
10.1016/j.seppur.2025.131697
10.1016/j.chemosphere.2010.03.030
10.1063/1.555808
10.1063/1.555739
10.1016/j.envres.2023.117500
10.1016/j.inoche.2024.113451
10.1016/j.watres.2015.02.014
10.1016/j.envres.2022.114601
10.1016/j.chemosphere.2022.136993
10.1016/j.cej.2016.03.090
10.1016/j.jenvman.2015.09.043
10.1016/j.cej.2015.06.061
10.1080/10643380500326564
10.1039/a807013j
10.1016/j.scitotenv.2019.134197
10.1590/0104-6632.20180353s20170032
10.20964/2017.05.60
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms26104785
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC12112118
A843378965
40429926
10_3390_ijms26104785
Genre Journal Article
GeographicLocations United States
Massachusetts
GeographicLocations_xml – name: Massachusetts
– name: United States
GrantInformation_xml – fundername: Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
  grantid: 451-03-136/2025-03/200017
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
K9.
M48
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c439t-544a775a3be0679c79402792e1fbad54d1e2485f12c3b1b61fa5aad9daaeb0da3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:37:14 EDT 2025
Fri Jul 11 17:13:16 EDT 2025
Sat Aug 23 14:10:12 EDT 2025
Wed Jun 18 17:00:45 EDT 2025
Tue Jun 17 03:40:38 EDT 2025
Sun Jun 01 01:35:19 EDT 2025
Sun Jul 06 05:05:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords bisphenol A (BPA)
kinetic modelling
electrooxidation processes
second-order rate constants
organic pollutants
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-544a775a3be0679c79402792e1fbad54d1e2485f12c3b1b61fa5aad9daaeb0da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5547-7450
0000-0002-6437-519X
0000-0003-0566-3244
0000-0003-2547-7123
0000-0001-7506-9684
0000-0002-9588-8609
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms26104785
PMID 40429926
PQID 3211997622
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12112118
proquest_miscellaneous_3212780961
proquest_journals_3211997622
gale_infotracmisc_A843378965
gale_infotracacademiconefile_A843378965
pubmed_primary_40429926
crossref_primary_10_3390_ijms26104785
PublicationCentury 2000
PublicationDate 2025-05-16
PublicationDateYYYYMMDD 2025-05-16
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-16
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Neta (ref_13) 1988; 17
Gao (ref_66) 2020; 171
Cao (ref_15) 2023; 312
Nakagawa (ref_35) 2016; 296
Lin (ref_63) 2020; 38
Zhang (ref_4) 2024; 12
Wols (ref_31) 2015; 75
ref_56
(ref_57) 2024; 12
Luo (ref_16) 2024; 261
Zhang (ref_69) 2020; 240
(ref_49) 2023; 51
Ding (ref_53) 2020; 388
Vinayagam (ref_1) 2024; 240
Guinea (ref_73) 2008; 42
Koparal (ref_6) 2008; 42
Savall (ref_28) 2013; 4
Benvenuti (ref_75) 2018; 35
Shampine (ref_83) 1997; 18
Cai (ref_7) 2019; 257
Balseviciute (ref_41) 2025; 362
Minakata (ref_22) 2024; 57
Luo (ref_32) 2018; 137
Poerschmann (ref_58) 2010; 79
Kondrakov (ref_64) 2014; 160–161
Fu (ref_10) 2023; 311
Dai (ref_11) 2024; 22
Oturan (ref_61) 2003; 37
Bielski (ref_12) 1985; 14
Han (ref_52) 2023; 216
Cui (ref_50) 2009; 43
Koli (ref_38) 2025; 32
Sun (ref_36) 2020; 387
Kuang (ref_8) 2023; 229
Darsinou (ref_55) 2015; 280
Liu (ref_27) 2007; 41
Sun (ref_44) 2024; 12
Yazdani (ref_30) 2018; 255
Ateia (ref_34) 2020; 698
Xiao (ref_65) 2017; 231
ref_78
ref_77
Takahashi (ref_33) 2024; 59
Dormand (ref_82) 1980; 6
Xie (ref_9) 2022; 217
Roberts (ref_20) 2016; 138
Zhang (ref_26) 2023; 3
Buxton (ref_14) 1988; 17
Romo (ref_19) 2022; 144
ref_39
Dai (ref_68) 2017; 12
ref_37
Li (ref_43) 2023; 30
Zhang (ref_45) 2025; 13
Wu (ref_51) 2016; 4
Coleman (ref_79) 1994; 67
Spahr (ref_3) 2024; 10
Braxton (ref_18) 2022; 3
Mandal (ref_62) 2018; 21
Li (ref_74) 2013; 228
Xie (ref_67) 2022; 56
Coleman (ref_80) 1996; 6
ref_81
Alanazi (ref_17) 2024; 19
Fu (ref_23) 2024; 170
Lu (ref_60) 2013; 91
Turchi (ref_29) 1990; 122
Kundu (ref_54) 2025; 373
Hu (ref_21) 2008; 74
Pignatello (ref_40) 2006; 36
ref_42
Navaratnam (ref_71) 2002; 153
Kaplan (ref_47) 2014; 21
ref_2
Kusvuran (ref_59) 2013; 220
Ziola (ref_24) 2025; 129
ref_48
Amphlett (ref_72) 1968; Volume 81
Liu (ref_5) 2023; 3
Ferguson (ref_70) 1999; 1
Sharma (ref_46) 2016; 166
Sellers (ref_76) 1980; 105
Mandel (ref_25) 2014; 36
References_xml – ident: ref_78
– volume: 171
  start-page: 115394
  year: 2020
  ident: ref_66
  article-title: Degradation and Transformation of Bisphenol A in UV/Sodium Percarbonate: Dual Role of Carbonate Radical Anion
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115394
– volume: 122
  start-page: 178
  year: 1990
  ident: ref_29
  article-title: Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(90)90269-P
– volume: 144
  start-page: 18896
  year: 2022
  ident: ref_19
  article-title: Real-Time Detection of Hydroxyl Radical Generated at Operating Electrodes via Redox-Active Adduct Formation Using Scanning Electrochemical Microscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c06278
– volume: 51
  start-page: 103416
  year: 2023
  ident: ref_49
  article-title: Degradation of Bisphenol A on SnO2-MWCNT Electrode Using Electrochemical Oxidation
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2022.103416
– volume: 231
  start-page: 1446
  year: 2017
  ident: ref_65
  article-title: Mechanistic Insight into Degradation of Endocrine Disrupting Chemical by Hydroxyl Radical: An Experimental and Theoretical Approach
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.09.006
– volume: 312
  start-page: 137169
  year: 2023
  ident: ref_15
  article-title: Radical Chemistry, Degradation Mechanism and Toxicity Evolution of BPA in the UV/Chlorine and UV/H2O2
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.137169
– volume: 10
  start-page: e30402
  year: 2024
  ident: ref_3
  article-title: Advanced Oxidation Processes for Water and Wastewater Treatment—Guidance for Systematic Future Research
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e30402
– volume: 261
  start-page: 122023
  year: 2024
  ident: ref_16
  article-title: Environmental Implications of Superoxide Radicals: From Natural Processes to Engineering Applications
  publication-title: Water Res.
  doi: 10.1016/j.watres.2024.122023
– ident: ref_39
  doi: 10.1016/j.cclet.2025.111008
– volume: 13
  start-page: 116243
  year: 2025
  ident: ref_45
  article-title: Electrochemical Treatment of Bisphenol a Facilitated by a Dual-Ligand Copper Metal-Organic Framework/Graphene Oxide Hybrid Catalyst
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2025.116243
– volume: 41
  start-page: 1161
  year: 2007
  ident: ref_27
  article-title: Kinetic Modeling of Electro-Fenton Reaction in Aqueous Solution
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.12.006
– ident: ref_42
– volume: 74
  start-page: 760
  year: 2008
  ident: ref_21
  article-title: A Simple Electrochemical Method for the Determination of Hydroxyl Free Radicals without Separation Process
  publication-title: Talanta
  doi: 10.1016/j.talanta.2007.07.008
– ident: ref_48
  doi: 10.3390/molecules27165203
– volume: 67
  start-page: 189
  year: 1994
  ident: ref_79
  article-title: On the Convergence of Interior-Reflective Newton Methods for Nonlinear Minimization Subject to Bounds
  publication-title: Math. Program.
  doi: 10.1007/BF01582221
– volume: 6
  start-page: 19
  year: 1980
  ident: ref_82
  article-title: A Family of Embedded Runge-Kutta Formulae
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0771-050X(80)90013-3
– volume: 217
  start-page: 118425
  year: 2022
  ident: ref_9
  article-title: Hydroxyl Radicals in Anodic Oxidation Systems: Generation, Identification and Quantification
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118425
– volume: 42
  start-page: 2889
  year: 2008
  ident: ref_6
  article-title: Propham Mineralization in Aqueous Medium by Anodic Oxidation Using Boron-Doped Diamond Anode: Influence of Experimental Parameters on Degradation Kinetics and Mineralization Efficiency
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.02.027
– volume: 56
  start-page: 8784
  year: 2022
  ident: ref_67
  article-title: Effects of Molecular Structure on Organic Contaminants’ Degradation Efficiency and Dominant ROS in the Advanced Oxidation Process with Multiple ROS
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c00464
– volume: 3
  start-page: 21
  year: 2022
  ident: ref_18
  article-title: Electron Paramagnetic Resonance for the Detection of Electrochemically Generated Hydroxyl Radicals: Issues Associated with Electrochemical Oxidation of the Spin Trap
  publication-title: ACS Meas. Sci. Au
  doi: 10.1021/acsmeasuresciau.2c00049
– ident: ref_37
  doi: 10.1038/s41598-021-95083-7
– ident: ref_77
– volume: 3
  start-page: 2161
  year: 2023
  ident: ref_5
  article-title: Thermodynamic and Kinetic Investigation on Electrogeneration of Hydroxyl Radicals for Water Purification
  publication-title: ACS EST Eng.
  doi: 10.1021/acsestengg.2c00318
– volume: 388
  start-page: 121789
  year: 2020
  ident: ref_53
  article-title: Electrochemical Activation of Persulfate on BDD and DSA Anodes: Electrolyte Influence, Kinetics and Mechanisms in the Degradation of Bisphenol A
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121789
– volume: 18
  start-page: 1
  year: 1997
  ident: ref_83
  article-title: The MATLAB ODE Suite
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827594276424
– volume: Volume 81
  start-page: 231
  year: 1968
  ident: ref_72
  article-title: Pulse Radiolysis Studies of Deaerated Aqueous Salicylate Solutions
  publication-title: Radiation Chemistry
  doi: 10.1021/ba-1968-0081.ch016
– volume: 57
  start-page: 1658
  year: 2024
  ident: ref_22
  article-title: Development of an Elementary Reaction-Based Kinetic Model to Predict the Aqueous-Phase Fate of Organic Compounds Induced by Reactive Free Radicals
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.4c00021
– ident: ref_56
– volume: 3
  start-page: 335
  year: 2023
  ident: ref_26
  article-title: Ozone- and Hydroxyl Radical-Mediated Oxidation of Pharmaceutical Compounds Using Ni-Doped Sb–SnO2 Anodes: Degradation Kinetics and Transformation Products
  publication-title: ACS Est Eng.
  doi: 10.1021/acsestengg.2c00337
– volume: 21
  start-page: 11313
  year: 2014
  ident: ref_47
  article-title: Catalytic Wet Air Oxidation of Bisphenol A Solution in a Batch-Recycle Trickle-Bed Reactor over Titanate Nanotube-Based Catalysts
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3042-1
– volume: 373
  start-page: 123558
  year: 2025
  ident: ref_54
  article-title: Clearing the Path: Unraveling Bisphenol a Removal and Degradation Mechanisms for a Cleaner Future
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2024.123558
– volume: 153
  start-page: 153
  year: 2002
  ident: ref_71
  article-title: Kinetic and Spectral Properties of Rhodamine 6G Free Radicals: A Pulse Radiolysis Study
  publication-title: J. Photochem. Photobiol. Chem.
  doi: 10.1016/S1010-6030(02)00265-4
– volume: 387
  start-page: 124124
  year: 2020
  ident: ref_36
  article-title: Degradation of Bisphenol A by Electrocatalytic Wet Air Oxidation Process: Kinetic Modeling, Degradation Pathway and Performance Assessment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124124
– volume: 4
  start-page: 2807
  year: 2016
  ident: ref_51
  article-title: A Comparative Study on Electrochemical Oxidation of Bisphenol A by Boron-Doped Diamond Anode and Modified SnO2-Sb Anodes: Influencing Parameters and Reaction Pathways
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2016.05.034
– volume: 255
  start-page: 102
  year: 2018
  ident: ref_30
  article-title: Sonochemical Preparation and Photocatalytic Application of Ag-ZnS-MWCNTs Composite for the Degradation of Rhodamine B under Visible Light: Experimental Design and Kinetics Modeling
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.01.154
– volume: 42
  start-page: 499
  year: 2008
  ident: ref_73
  article-title: Mineralization of Salicylic Acid in Acidic Aqueous Medium by Electrochemical Advanced Oxidation Processes Using Platinum and Boron-Doped Diamond as Anode and Cathodically Generated Hydrogen Peroxide
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.07.046
– volume: 32
  start-page: 4656
  year: 2025
  ident: ref_38
  article-title: Impact of Operating Parameters on the Electrooxidation of Methylene Blue and Ciprofloxacin: A Comprehensive Analysis and Degradation Pathway
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-025-35992-6
– volume: 37
  start-page: 3716
  year: 2003
  ident: ref_61
  article-title: Indirect Electrochemical Treatment of Bisphenol A in Water via Electrochemically Generated Fenton’s Reagent
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034011e
– volume: 22
  start-page: 3059
  year: 2024
  ident: ref_11
  article-title: Hydroxyl Radicals in Ozone-Based Advanced Oxidation of Organic Contaminants: A Review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-024-01772-w
– volume: 36
  start-page: 73
  year: 2014
  ident: ref_25
  article-title: Large-Scale Experimental Validation of a Model for the Kinetics of Ozone and Hydroxyl Radicals with Natural Organic Matter
  publication-title: Ozone Sci. Eng.
  doi: 10.1080/01919512.2013.836447
– volume: 220
  start-page: 6
  year: 2013
  ident: ref_59
  article-title: Degradation of Bisphenol A by Ozonation and Determination of Degradation Intermediates by Gas Chromatography–Mass Spectrometry and Liquid Chromatography–Mass Spectrometry
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.01.064
– volume: 38
  start-page: 101636
  year: 2020
  ident: ref_63
  article-title: Kinetics and Mechanism of Sulfate Radical- and Hydroxyl Radical-Induced Degradation of Bisphenol A in VUV/UV/Peroxymonosulfate System
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2020.101636
– ident: ref_2
  doi: 10.3390/coatings14081060
– volume: 30
  start-page: 74916
  year: 2023
  ident: ref_43
  article-title: Adsorbent Biochar Derived from Corn Stalk Core for Highly Efficient Removal of Bisphenol A
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-023-27545-6
– volume: 19
  start-page: e202400105
  year: 2024
  ident: ref_17
  article-title: Recent Advances in Detection of Hydroxyl Radical by Responsive Fluorescence Nanoprobes
  publication-title: Chem.—Asian J.
  doi: 10.1002/asia.202400105
– volume: 43
  start-page: 1968
  year: 2009
  ident: ref_50
  article-title: Electrochemical Degradation of Bisphenol A on Different Anodes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.01.026
– volume: 91
  start-page: 1266
  year: 2013
  ident: ref_60
  article-title: H3PW12O40/TiO2 Catalyst-Induced Photodegradation of Bisphenol A (BPA): Kinetics, Toxicity and Degradation Pathways
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.02.023
– volume: 229
  start-page: 119464
  year: 2023
  ident: ref_8
  article-title: Integrating Anodic Sulfate Activation with Cathodic H2O2 Production/Activation to Generate the Sulfate and Hydroxyl Radicals for the Degradation of Emerging Organic Contaminants
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.119464
– volume: 160–161
  start-page: 106
  year: 2014
  ident: ref_64
  article-title: Formation of Genotoxic Quinones during Bisphenol A Degradation by TiO2 Photocatalysis and UV Photolysis: A Comparative Study
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.05.007
– volume: 12
  start-page: 113778
  year: 2024
  ident: ref_4
  article-title: A Comprehensive Review of the Electrochemical Advanced Oxidation Processes: Detection of Free Radical, Electrode Materials and Application
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2024.113778
– volume: 137
  start-page: 233
  year: 2018
  ident: ref_32
  article-title: Kinetic and Mechanistic Aspects of Hydroxyl Radical–mediated Degradation of Naproxen and Reaction Intermediates
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.002
– volume: 59
  start-page: 113
  year: 2024
  ident: ref_33
  article-title: Photocatalytic Degradation Process of Antibiotic Sulfamethoxazole by ZnO in Aquatic Systems: A Dynamic Kinetic Model Based on Contributions of OH Radical, Oxygenated Radical Intermediates and Dissolved Oxygen
  publication-title: J. Environ. Sci. Health Part A
  doi: 10.1080/10934529.2024.2339171
– volume: 129
  start-page: 1688
  year: 2025
  ident: ref_24
  article-title: Effects of a Carboxyl Group on the Products, Mechanism, and Kinetics of the OH Radical-Initiated Oxidation of 3-Butenoic Acid Under Low NOx Conditions
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.4c07849
– volume: 138
  start-page: 2516
  year: 2016
  ident: ref_20
  article-title: The Hydroxyl Radical Is a Critical Intermediate in the Voltammetric Detection of Hydrogen Peroxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13376
– volume: 17
  start-page: 513
  year: 1988
  ident: ref_14
  article-title: Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (·OH/·O− in Aqueous Solution
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555805
– volume: 12
  start-page: 114245
  year: 2024
  ident: ref_44
  article-title: Electrochemical Oxidation of Bisphenol A with a Fe-N-C/Persulfate Three-Dimensional Electrochemical System
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2024.114245
– volume: 240
  start-page: 124929
  year: 2020
  ident: ref_69
  article-title: Kinetic Study of the Degradation of Rhodamine B Using a Flow-through UV/Electro-Fenton Process with the Presence of Ethylenediaminetetraacetic Acid
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124929
– volume: 6
  start-page: 418
  year: 1996
  ident: ref_80
  article-title: An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds
  publication-title: SIAM J. Optim.
  doi: 10.1137/0806023
– volume: 257
  start-page: 117902
  year: 2019
  ident: ref_7
  article-title: Extremely Efficient Electrochemical Degradation of Organic Pollutants with Co-Generation of Hydroxyl and Sulfate Radicals on Blue-TiO2 Nanotubes Anode
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.117902
– volume: 4
  start-page: 346
  year: 2013
  ident: ref_28
  article-title: Role of Hydroxyl Radicals During the Competitive Electrooxidation of Organic Compounds on a Boron-Doped Diamond Anode
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-013-0150-5
– volume: 12
  start-page: 113369
  year: 2024
  ident: ref_57
  article-title: Degradation of Bisphenol A via the Electro–Fenton Process Using Nanostructured Carbon-Metal Oxide Anodes: Intermediates and Reaction Mechanisms Study
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2024.113369
– volume: 105
  start-page: 950
  year: 1980
  ident: ref_76
  article-title: Spectrophotometric Determination of Hydrogen Peroxide Using Potassium Titanium(IV) Oxalate
  publication-title: Analyst
  doi: 10.1039/an9800500950
– volume: 228
  start-page: 806
  year: 2013
  ident: ref_74
  article-title: Fabrication of Cerium-Doped Lead Dioxide Anode with Improved Electrocatalytic Activity and Its Application for Removal of Rhodamine B
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.05.064
– ident: ref_81
– volume: 362
  start-page: 131697
  year: 2025
  ident: ref_41
  article-title: Degradation of Multicomponent Pharmaceutical Mixtures by Electrochemical Oxidation: Insights about the Process Evolution at Varying Applied Currents and Concentrations of Organics and Supporting Electrolyte
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2025.131697
– volume: 79
  start-page: 975
  year: 2010
  ident: ref_58
  article-title: Aromatic Intermediate Formation during Oxidative Degradation of Bisphenol A by Homogeneous Sub-Stoichiometric Fenton Reaction
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.03.030
– volume: 17
  start-page: 1027
  year: 1988
  ident: ref_13
  article-title: Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555808
– volume: 14
  start-page: 1041
  year: 1985
  ident: ref_12
  article-title: Reactivity of HO2/O−2 Radicals in Aqueous Solution
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555739
– volume: 240
  start-page: 117500
  year: 2024
  ident: ref_1
  article-title: Recent Developments on Advanced Oxidation Processes for Degradation of Pollutants from Wastewater with Focus on Antibiotics and Organic Dyes
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2023.117500
– volume: 170
  start-page: 113451
  year: 2024
  ident: ref_23
  article-title: Enhanced Removal of Tetracycline Hydrochloride by Activation of Persulfate with Sludge-Red Mud Magnetic Biochar: Synergistic Effect between Adsorption and Radical-Nonradical Pathways
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2024.113451
– volume: 75
  start-page: 11
  year: 2015
  ident: ref_31
  article-title: Degradation of Pharmaceuticals in UV (LP)/H2O2 Reactors Simulated by Means of Kinetic Modeling and Computational Fluid Dynamics (CFD)
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.02.014
– volume: 216
  start-page: 114601
  year: 2023
  ident: ref_52
  article-title: Effectiveness and Degradation Pathways of Bisphenol A (BPA) Initiated by Hydroxyl Radicals and Sulfate Radicals in Water: Initial Reaction Sites Based on DFT Prediction
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.114601
– volume: 311
  start-page: 136993
  year: 2023
  ident: ref_10
  article-title: Wastewater Treatment by Anodic Oxidation in Electrochemical Advanced Oxidation Process: Advance in Mechanism, Direct and Indirect Oxidation Detection Methods
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.136993
– volume: 296
  start-page: 398
  year: 2016
  ident: ref_35
  article-title: Fered-Fenton Process for the Degradation of 1,4-Dioxane with an Activated Carbon Electrode: A Kinetic Model Including Active Radicals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.03.090
– volume: 166
  start-page: 12
  year: 2016
  ident: ref_46
  article-title: Mechanistic Study of Photo-Oxidation of Bisphenol-A (BPA) with Hydrogen Peroxide (H2O2) and Sodium Persulfate (SPS)
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.09.043
– volume: 280
  start-page: 623
  year: 2015
  ident: ref_55
  article-title: Sono-Activated Persulfate Oxidation of Bisphenol A: Kinetics, Pathways and the Controversial Role of Temperature
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.06.061
– volume: 36
  start-page: 1
  year: 2006
  ident: ref_40
  article-title: Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380500326564
– volume: 1
  start-page: 261
  year: 1999
  ident: ref_70
  article-title: Excited State and Free Radical Properties of Rhodamine 123: A Laser Flash Photolysis and Radiolysis Study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a807013j
– volume: 698
  start-page: 134197
  year: 2020
  ident: ref_34
  article-title: Modeling the Degradation and Disinfection of Water Pollutants by Photocatalysts and Composites: A Critical Review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134197
– volume: 35
  start-page: 957
  year: 2018
  ident: ref_75
  article-title: Evaluation of direct photolysis, electrooxidation and photoelectrooxidation for Rhodamine-B degradation
  publication-title: Braz. J. Chem. Eng.
  doi: 10.1590/0104-6632.20180353s20170032
– volume: 12
  start-page: 4265
  year: 2017
  ident: ref_68
  article-title: Electrochemical Oxidation of Rhodamine B: Optimization and Degradation Mechanism
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2017.05.60
– volume: 21
  start-page: 20170075
  year: 2018
  ident: ref_62
  article-title: Reaction Rate Constants of Hydroxyl Radicals with Micropollutants and Their Significance in Advanced Oxidation Processes
  publication-title: J. Adv. Oxid. Technol.
SSID ssj0023259
Score 2.4318686
Snippet The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 4785
SubjectTerms Benzhydryl Compounds - chemistry
Bisphenol A
Bisphenol A Compounds
By products
Chromatography
Efficiency
Electrochemical reactions
Electrochemical Techniques - methods
Electrodes
Equilibrium
Evolution
Gas Chromatography-Mass Spectrometry
Hydrogen Peroxide - chemistry
Hydroxyl Radical - analysis
Hydroxyl Radical - chemistry
Investigations
Kinetics
Methods
Mineralization
Morphology
Oxidation
Oxidation-Reduction
Oxidation-reduction reaction
Phenols
Phenols - chemistry
Pollutants
Toxicity
Trends
Wastewater treatment
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJtAQUYCcYq6sZ3Y4YLa0tUKqVBRKu0tsmOvGkSTpdlK9K_wa5lxvNsNB6TcPIljjT0Pe_x9AG-NccZauvbLpccERaAdrIVNZWZ5rcrCqlDtfvylmJ3Jz_N8Hjfc-lhWubaJwVC7rqY98j1BUGToOzn_uPyVEmsUna5GCo3bcIegy6ikS81vEi7BA1lahj4oLfKyGArfBab5e82Pix6TB8KmyUcu6V_DvOWZxlWTW25o-gDux_iR7Q8Kfwi3fPsI7g6MkteP4c_JJZ28UC0zw9COTTGUZN2CHTQ9FXN1-Cb7FG4msqOBAKeOiAHs6-9m4Ff6gDKnDaEGs1Ns8xfLJuCIsOPANs0O0PE51rWhg0O69thG7F12MjCAU4-za0cVMj_ZNxOOgvoncDY9-n44SyP9QlpjlLJKcymNUrkR1tNuE2oOc01Vcp8trHG5dJknPLRFxlG5mS2yhclR9aUzxtuJM-Ip7LRd658Ds_gRzTNjtFdoNCbGYg-69LnXxkk-SeDdWgPVckDZqDA7IU1V25pK4D2pp6LFhyOrTbxDgL3Q6Kp9LYVQuixQcnckiYumHjevFVzFRdtXN1MsgTebZnqTCtFa310FGa408eQk8GyYD5s_lsG58yIBPZopGwGC8h63tM15gPQmoD189Iv__9dLuMeJf5jQY4td2FldXvlXGBSt7Osw8_8Cwp4NyA
  priority: 102
  providerName: ProQuest
Title Predicting the Fate of Bisphenol A During Electrochemical Oxidation: A Simple Semiempirical Method Based on the Concentration Profile of Hydroxyl Radicals
URI https://www.ncbi.nlm.nih.gov/pubmed/40429926
https://www.proquest.com/docview/3211997622
https://www.proquest.com/docview/3212780961
https://pubmed.ncbi.nlm.nih.gov/PMC12112118
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9swED76wmBfxt7rrQsabOyTt1iWLXlQStMmC4N0oV0g34xkK8yjtbskheav7NfuTnZC3I1B8BedItt30t1Zp-cBeKd1ro2hY79cWExQQlwHs9D4IjA8k0lspKt2H53Hw4n4Oo2mO7BmG21e4OKfqR3xSU3mVx_vfq2OccIfUcaJKfun4uf1AhMBwpmJdmEffZKkKToSm_0EDBscbRp98PBpga5L4P_q3XJO95foLR_Vrp_cckiDx_CoiSTZSa36J7Bjy6fwoOaWXD2D3-M57cFQVTPDII8NMKhk1Yz1igWVdVXYk525M4qsX1PhZA12APt2V9RMS59R5rIg_GB2iW32-qZwiCJs5HinWQ9dYM6q0g1wSgcgywaFl41rLnAacbjKqVbmil1otym0eA6TQf_76dBviBj8DOOVpR8JoaWMdGgsfXdCHWLWKRNug5nReSTywBIy2izgqObAxMFMR2gESa61Nd1chy9gr6xKewDM4J8oHmitrMTlo6sNjqASG1mlc8G7HrxfayC9qfE2UsxTSFPptqY8-EDqSckw8Mky3ZwmwFHo6dITJcJQqiRGycOWJE6frN28VnC6tr40JNw7DNQ49-Dtppl6UklaaatbJ8OlIsYcD17W9rC5Y-HcPI89UC1L2QgQqHe7pSx-OHBvgtzDn3r1_9t-DQ85MRETjmx8CHvL-a19g-HR0nRgV04lXtXgSwf2e_3z8UWHHFbUcXPiDz43FHY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASNRcYqa2Hk4SAj1tdrSbqloK-0t2IlXTUWTpdkK9q_wI_iNzDjJdsOBW6Xc7MS2ZsbjiWe-D-CdUrnSmsp-eWAwQBG4D2ZCu4GveRYnkY5ttvvoMBqeBp_H4XgF_nS1MJRW2e2JdqPOq4z-kW8IgiJD38n5p-kPl1ij6Ha1o9Bo1GLfzH9iyFZ_3NtB-a5zPtg92R66LauAm6HznblhEKg4DpXQhn6i4IQwhIoTbvyJVnkY5L4hmK-Jz3HOvo78iQpxRUmulNFergR-9xbcRsfrkUXF4-sAT3BLzuajz3OjMImaRHshEm-jOL-oMVghLJyw5wL_dQRLnrCfpbnk9gYP4H57XmWbjYI9hBVTPoI7DYPl_DH8Prqkmx7KnWZ4lGQDPLqyasK2ipqSxyp8k-3YSki22xDuZC1CAfvyq2j4nD5gn-OCUIrZMbaZi2lhcUvYyLJbsy10tDmrSjvANpVZli3WLztqGMdpxOE8p4yc7-yrsldP9RM4vRHBPIXVsirNc2AaPyK5r5Q0MW5SntI4gkxMaKTKA-45sN5JIJ02qB4pRkMkqXRZUg68J_GkZOy4sky1NQs4Cq0u3ZSBELFMIuy51uuJRpr1mzsBp-0mUafXKu3A20UzvUmJb6WprmwfHkvi5XHgWaMPixkH9jDBIwdkT1MWHQg6vN9SFmcWQpyA_fCRL_4_rzdwd3gyOkgP9g73X8I9TtzHhFwbrcHq7PLKvMID2Uy_tlbA4NtNm91fmgtLwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIhAXxD-BAkai4hTtxk7iBAmhttvVltKyolTaW7ATRwTRZGm2gn0VHoWnY8ZJthsO3CrlZie2NZ6_ePx9AK-UypTWdO2X-wYTFIF2MBXa9T3NUxmHWtpq96PjcHLqv58Fsw34092FobLKziZaQ51VKf0jHwiCIkPfyfkgb8sipqPxu_kPlxik6KS1o9NotsihWf7E9K1-ezBCWW9zPt7_vDdxW4YBN0VHvHAD31dSBkpoQz9UcHKYTsmYGy_XKgv8zDME-ZV7HOfv6dDLVYCrizOljB5mSuB3r8F1KQKPdEzOLpM9wS1Rm4f-zw2DOGyK7oWIh4Pi21mNiQvh4gQ9d_ivU1jziv2KzTUXOL4Dt9vYle00m-0ubJjyHtxo2CyX9-H39JxOfaiOmmFYycYYxrIqZ7tFTYVkFb7JRvZWJNtvyHfSFq2AffxVNNxOb7DPSUGIxewE28zZvLAYJuzIMl2zXXS6GatKO8AeXbksW9xfNm3Yx2nEyTKj6pzv7JOyx1D1Azi9EsE8hM2yKs1jYBo_EnFPqchINFhDpXGEKDaBiVTm86ED250EknmD8JFgZkSSStYl5cBrEk9Cio8rS1V7fwFHodUlO5EvhIziEHtu9Xqiwqb95k7ASWsw6uRyezvwctVMb1IRXGmqC9uHy4g4ehx41OyH1Yx9G1jw0IGot1NWHQhGvN9SFl8tnDiB_OETPfn_vF7ATVS45MPB8eFTuMWJBplAbMMt2FycX5hnGJst9HOrBAy-XLXW_QXTXE_3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+Fate+of+Bisphenol+A+During+Electrochemical+Oxidation%3A+A+Simple+Semiempirical+Method+Based+on+the+Concentration+Profile+of+Hydroxyl+Radicals&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Je%C4%8Dmenica+Du%C4%8Di%C4%87%2C+Marija&rft.au=Vasi%C4%87+Ani%C4%87ijevi%C4%87%2C+Dragana&rft.au=A%C4%87imovi%C4%87%2C+Danka&rft.au=%C5%A0vorc%2C+%C4%BDubom%C3%ADr&rft.date=2025-05-16&rft.pub=MDPI+AG&rft.issn=1422-0067&rft.volume=26&rft.issue=10&rft_id=info:doi/10.3390%2Fijms26104785&rft.externalDocID=A843378965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon