Predicting the Fate of Bisphenol A During Electrochemical Oxidation: A Simple Semiempirical Method Based on the Concentration Profile of Hydroxyl Radicals
The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles...
Saved in:
Published in | International journal of molecular sciences Vol. 26; no. 10; p. 4785 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
16.05.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H2O2 measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm2. Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10–20 mA/cm2). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems. |
---|---|
AbstractList | The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H2O2 measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm2. Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10–20 mA/cm2). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems. The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H2O2 measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm2. Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10-20 mA/cm2). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems.The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H2O2 measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm2. Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10-20 mA/cm2). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems. The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H O measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm . Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10-20 mA/cm ). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems. The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H[sub.2]O[sub.2] measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm[sup.2]. Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10–20 mA/cm[sup.2]). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems. The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct experimental measurements of these transient species remain complex and impractical, robust computational methods for predicting their temporal profiles are notably scarce. This work presents a semi-empirical methodology based on H 2 O 2 measuring experiments that enables indirect •OH quantification. We employed a recently developed carbon-based electrode and the priority pollutant bisphenol A (BPA) as the model system. The system achieved 92.3% BPA degradation with 84% mineralization efficiency during 5-h electrooxidation at 15 mA/cm 2 . Gas chromatography/mass spectrometry (GC/MS) was used for tracking BPA and detection of intermediates. On this basis, we developed a computational model that successfully predicts temporal concentration profiles of all reactive species interacting with •OH, along with degradation kinetics across current densities (10–20 mA/cm 2 ). By incorporating predictions from the Toxicity Estimation Software Tool (T.E.S.T.), the developed model accurately simulates time-dependent evolution of relative toxicity throughout the treatment process. The presented approach has a general character and requires rather simple experimental input to predict and optimize degradation outcome in terms of input concentration, degradation time, current density, and final toxicity. Further modifications of the model would enable widening to other EAOPs systems. |
Audience | Academic |
Author | Aćimović, Danka Švorc, Ľubomír Vasić Anićijević, Dragana Brdarić, Tanja Bugarski, Branko Ječmenica Dučić, Marija Pešić, Radojica |
AuthorAffiliation | 3 Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia 2 Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia 1 Department of Physical Chemistry, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12–14, 11000 Belgrade, Serbia |
AuthorAffiliation_xml | – name: 3 Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia – name: 1 Department of Physical Chemistry, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12–14, 11000 Belgrade, Serbia – name: 2 Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia |
Author_xml | – sequence: 1 givenname: Marija orcidid: 0000-0002-6437-519X surname: Ječmenica Dučić fullname: Ječmenica Dučić, Marija – sequence: 2 givenname: Dragana orcidid: 0000-0003-0566-3244 surname: Vasić Anićijević fullname: Vasić Anićijević, Dragana – sequence: 3 givenname: Danka orcidid: 0000-0001-7506-9684 surname: Aćimović fullname: Aćimović, Danka – sequence: 4 givenname: Ľubomír orcidid: 0000-0002-9588-8609 surname: Švorc fullname: Švorc, Ľubomír – sequence: 5 givenname: Branko surname: Bugarski fullname: Bugarski, Branko – sequence: 6 givenname: Radojica orcidid: 0000-0002-5547-7450 surname: Pešić fullname: Pešić, Radojica – sequence: 7 givenname: Tanja orcidid: 0000-0003-2547-7123 surname: Brdarić fullname: Brdarić, Tanja |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40429926$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhiNURD_gxhlZ4sKBLf7Kh7mg7dJSpKJWFM6WY092vUrsYCeo-1f4tTi7pWwRsqWxNM-847Hf4-zAeQdZ9pLgU8YEfmfXXaQFwbys8ifZEeGUzjAuyoO982F2HOMaY8poLp5lhxxzKgQtjrJfNwGM1YN1SzSsAF2oAZBv0JmN_Qqcb9EcfRzDlD5vQQ_B6xV0VqsWXd9Zowbr3fvE3NqubwHdphx0vQ1b4gsMK2_QmYpgkHfbBgvvNLghbCvRTfCNbbcdLzcm-LtNi74qM1XH59nTJgV4cR9Psu8X598Wl7Or60-fF_OrmeZMDLOcc1WWuWI1pEmFLgXHtBQUSFMrk3NDgPIqbwjVrCZ1QRqVK2WEUQpqbBQ7yT7sdPux7sDsbtfKPthOhY30ysrHGWdXcul_SkLJtKuk8OZeIfgfI8RBdjZqaFvlwI9RMkpoWWFRkIS-_gdd-zG4NN9EESHKgtK_1FK1IK1rfGqsJ1E5rzhjZSWKPFGn_6HSMtMPJZdMT_u44NX-pA8j_rFDAt7uAB18jAGaB4RgOblN7ruN_QZ05Mhr |
Cites_doi | 10.1016/j.watres.2019.115394 10.1016/0021-9517(90)90269-P 10.1021/jacs.2c06278 10.1016/j.jwpe.2022.103416 10.1016/j.envpol.2017.09.006 10.1016/j.chemosphere.2022.137169 10.1016/j.heliyon.2024.e30402 10.1016/j.watres.2024.122023 10.1016/j.cclet.2025.111008 10.1016/j.jece.2025.116243 10.1016/j.watres.2006.12.006 10.1016/j.talanta.2007.07.008 10.3390/molecules27165203 10.1007/BF01582221 10.1016/0771-050X(80)90013-3 10.1016/j.watres.2022.118425 10.1016/j.watres.2008.02.027 10.1021/acs.est.2c00464 10.1021/acsmeasuresciau.2c00049 10.1038/s41598-021-95083-7 10.1021/acsestengg.2c00318 10.1016/j.jhazmat.2019.121789 10.1137/S1064827594276424 10.1021/ba-1968-0081.ch016 10.1021/acs.accounts.4c00021 10.1021/acsestengg.2c00337 10.1007/s11356-014-3042-1 10.1016/j.jenvman.2024.123558 10.1016/S1010-6030(02)00265-4 10.1016/j.cej.2020.124124 10.1016/j.jece.2016.05.034 10.1016/j.molliq.2018.01.154 10.1016/j.watres.2007.07.046 10.1007/s11356-025-35992-6 10.1021/es034011e 10.1007/s10311-024-01772-w 10.1080/01919512.2013.836447 10.1016/j.cej.2013.01.064 10.1016/j.jwpe.2020.101636 10.3390/coatings14081060 10.1007/s11356-023-27545-6 10.1002/asia.202400105 10.1016/j.watres.2009.01.026 10.1016/j.chemosphere.2013.02.023 10.1016/j.watres.2022.119464 10.1016/j.apcatb.2014.05.007 10.1016/j.jece.2024.113778 10.1016/j.watres.2018.03.002 10.1080/10934529.2024.2339171 10.1021/acs.jpca.4c07849 10.1021/jacs.5b13376 10.1063/1.555805 10.1016/j.jece.2024.114245 10.1016/j.chemosphere.2019.124929 10.1137/0806023 10.1016/j.apcatb.2019.117902 10.1007/s12678-013-0150-5 10.1016/j.jece.2024.113369 10.1039/an9800500950 10.1016/j.cej.2013.05.064 10.1016/j.seppur.2025.131697 10.1016/j.chemosphere.2010.03.030 10.1063/1.555808 10.1063/1.555739 10.1016/j.envres.2023.117500 10.1016/j.inoche.2024.113451 10.1016/j.watres.2015.02.014 10.1016/j.envres.2022.114601 10.1016/j.chemosphere.2022.136993 10.1016/j.cej.2016.03.090 10.1016/j.jenvman.2015.09.043 10.1016/j.cej.2015.06.061 10.1080/10643380500326564 10.1039/a807013j 10.1016/j.scitotenv.2019.134197 10.1590/0104-6632.20180353s20170032 10.20964/2017.05.60 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms26104785 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC12112118 A843378965 40429926 10_3390_ijms26104785 |
Genre | Journal Article |
GeographicLocations | United States Massachusetts |
GeographicLocations_xml | – name: Massachusetts – name: United States |
GrantInformation_xml | – fundername: Ministry of Science, Technological Development, and Innovation of the Republic of Serbia grantid: 451-03-136/2025-03/200017 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK K9. M48 MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c439t-544a775a3be0679c79402792e1fbad54d1e2485f12c3b1b61fa5aad9daaeb0da3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:37:14 EDT 2025 Fri Jul 11 17:13:16 EDT 2025 Sat Aug 23 14:10:12 EDT 2025 Wed Jun 18 17:00:45 EDT 2025 Tue Jun 17 03:40:38 EDT 2025 Sun Jun 01 01:35:19 EDT 2025 Sun Jul 06 05:05:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | bisphenol A (BPA) kinetic modelling electrooxidation processes second-order rate constants organic pollutants |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-544a775a3be0679c79402792e1fbad54d1e2485f12c3b1b61fa5aad9daaeb0da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5547-7450 0000-0002-6437-519X 0000-0003-0566-3244 0000-0003-2547-7123 0000-0001-7506-9684 0000-0002-9588-8609 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms26104785 |
PMID | 40429926 |
PQID | 3211997622 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12112118 proquest_miscellaneous_3212780961 proquest_journals_3211997622 gale_infotracmisc_A843378965 gale_infotracacademiconefile_A843378965 pubmed_primary_40429926 crossref_primary_10_3390_ijms26104785 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-16 |
PublicationDateYYYYMMDD | 2025-05-16 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Neta (ref_13) 1988; 17 Gao (ref_66) 2020; 171 Cao (ref_15) 2023; 312 Nakagawa (ref_35) 2016; 296 Lin (ref_63) 2020; 38 Zhang (ref_4) 2024; 12 Wols (ref_31) 2015; 75 ref_56 (ref_57) 2024; 12 Luo (ref_16) 2024; 261 Zhang (ref_69) 2020; 240 (ref_49) 2023; 51 Ding (ref_53) 2020; 388 Vinayagam (ref_1) 2024; 240 Guinea (ref_73) 2008; 42 Koparal (ref_6) 2008; 42 Savall (ref_28) 2013; 4 Benvenuti (ref_75) 2018; 35 Shampine (ref_83) 1997; 18 Cai (ref_7) 2019; 257 Balseviciute (ref_41) 2025; 362 Minakata (ref_22) 2024; 57 Luo (ref_32) 2018; 137 Poerschmann (ref_58) 2010; 79 Kondrakov (ref_64) 2014; 160–161 Fu (ref_10) 2023; 311 Dai (ref_11) 2024; 22 Oturan (ref_61) 2003; 37 Bielski (ref_12) 1985; 14 Han (ref_52) 2023; 216 Cui (ref_50) 2009; 43 Koli (ref_38) 2025; 32 Sun (ref_36) 2020; 387 Kuang (ref_8) 2023; 229 Darsinou (ref_55) 2015; 280 Liu (ref_27) 2007; 41 Sun (ref_44) 2024; 12 Yazdani (ref_30) 2018; 255 Ateia (ref_34) 2020; 698 Xiao (ref_65) 2017; 231 ref_78 ref_77 Takahashi (ref_33) 2024; 59 Dormand (ref_82) 1980; 6 Xie (ref_9) 2022; 217 Roberts (ref_20) 2016; 138 Zhang (ref_26) 2023; 3 Buxton (ref_14) 1988; 17 Romo (ref_19) 2022; 144 ref_39 Dai (ref_68) 2017; 12 ref_37 Li (ref_43) 2023; 30 Zhang (ref_45) 2025; 13 Wu (ref_51) 2016; 4 Coleman (ref_79) 1994; 67 Spahr (ref_3) 2024; 10 Braxton (ref_18) 2022; 3 Mandal (ref_62) 2018; 21 Li (ref_74) 2013; 228 Xie (ref_67) 2022; 56 Coleman (ref_80) 1996; 6 ref_81 Alanazi (ref_17) 2024; 19 Fu (ref_23) 2024; 170 Lu (ref_60) 2013; 91 Turchi (ref_29) 1990; 122 Kundu (ref_54) 2025; 373 Hu (ref_21) 2008; 74 Pignatello (ref_40) 2006; 36 ref_42 Navaratnam (ref_71) 2002; 153 Kaplan (ref_47) 2014; 21 ref_2 Kusvuran (ref_59) 2013; 220 Ziola (ref_24) 2025; 129 ref_48 Amphlett (ref_72) 1968; Volume 81 Liu (ref_5) 2023; 3 Ferguson (ref_70) 1999; 1 Sharma (ref_46) 2016; 166 Sellers (ref_76) 1980; 105 Mandel (ref_25) 2014; 36 |
References_xml | – ident: ref_78 – volume: 171 start-page: 115394 year: 2020 ident: ref_66 article-title: Degradation and Transformation of Bisphenol A in UV/Sodium Percarbonate: Dual Role of Carbonate Radical Anion publication-title: Water Res. doi: 10.1016/j.watres.2019.115394 – volume: 122 start-page: 178 year: 1990 ident: ref_29 article-title: Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack publication-title: J. Catal. doi: 10.1016/0021-9517(90)90269-P – volume: 144 start-page: 18896 year: 2022 ident: ref_19 article-title: Real-Time Detection of Hydroxyl Radical Generated at Operating Electrodes via Redox-Active Adduct Formation Using Scanning Electrochemical Microscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c06278 – volume: 51 start-page: 103416 year: 2023 ident: ref_49 article-title: Degradation of Bisphenol A on SnO2-MWCNT Electrode Using Electrochemical Oxidation publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2022.103416 – volume: 231 start-page: 1446 year: 2017 ident: ref_65 article-title: Mechanistic Insight into Degradation of Endocrine Disrupting Chemical by Hydroxyl Radical: An Experimental and Theoretical Approach publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.09.006 – volume: 312 start-page: 137169 year: 2023 ident: ref_15 article-title: Radical Chemistry, Degradation Mechanism and Toxicity Evolution of BPA in the UV/Chlorine and UV/H2O2 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.137169 – volume: 10 start-page: e30402 year: 2024 ident: ref_3 article-title: Advanced Oxidation Processes for Water and Wastewater Treatment—Guidance for Systematic Future Research publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e30402 – volume: 261 start-page: 122023 year: 2024 ident: ref_16 article-title: Environmental Implications of Superoxide Radicals: From Natural Processes to Engineering Applications publication-title: Water Res. doi: 10.1016/j.watres.2024.122023 – ident: ref_39 doi: 10.1016/j.cclet.2025.111008 – volume: 13 start-page: 116243 year: 2025 ident: ref_45 article-title: Electrochemical Treatment of Bisphenol a Facilitated by a Dual-Ligand Copper Metal-Organic Framework/Graphene Oxide Hybrid Catalyst publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2025.116243 – volume: 41 start-page: 1161 year: 2007 ident: ref_27 article-title: Kinetic Modeling of Electro-Fenton Reaction in Aqueous Solution publication-title: Water Res. doi: 10.1016/j.watres.2006.12.006 – ident: ref_42 – volume: 74 start-page: 760 year: 2008 ident: ref_21 article-title: A Simple Electrochemical Method for the Determination of Hydroxyl Free Radicals without Separation Process publication-title: Talanta doi: 10.1016/j.talanta.2007.07.008 – ident: ref_48 doi: 10.3390/molecules27165203 – volume: 67 start-page: 189 year: 1994 ident: ref_79 article-title: On the Convergence of Interior-Reflective Newton Methods for Nonlinear Minimization Subject to Bounds publication-title: Math. Program. doi: 10.1007/BF01582221 – volume: 6 start-page: 19 year: 1980 ident: ref_82 article-title: A Family of Embedded Runge-Kutta Formulae publication-title: J. Comput. Appl. Math. doi: 10.1016/0771-050X(80)90013-3 – volume: 217 start-page: 118425 year: 2022 ident: ref_9 article-title: Hydroxyl Radicals in Anodic Oxidation Systems: Generation, Identification and Quantification publication-title: Water Res. doi: 10.1016/j.watres.2022.118425 – volume: 42 start-page: 2889 year: 2008 ident: ref_6 article-title: Propham Mineralization in Aqueous Medium by Anodic Oxidation Using Boron-Doped Diamond Anode: Influence of Experimental Parameters on Degradation Kinetics and Mineralization Efficiency publication-title: Water Res. doi: 10.1016/j.watres.2008.02.027 – volume: 56 start-page: 8784 year: 2022 ident: ref_67 article-title: Effects of Molecular Structure on Organic Contaminants’ Degradation Efficiency and Dominant ROS in the Advanced Oxidation Process with Multiple ROS publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c00464 – volume: 3 start-page: 21 year: 2022 ident: ref_18 article-title: Electron Paramagnetic Resonance for the Detection of Electrochemically Generated Hydroxyl Radicals: Issues Associated with Electrochemical Oxidation of the Spin Trap publication-title: ACS Meas. Sci. Au doi: 10.1021/acsmeasuresciau.2c00049 – ident: ref_37 doi: 10.1038/s41598-021-95083-7 – ident: ref_77 – volume: 3 start-page: 2161 year: 2023 ident: ref_5 article-title: Thermodynamic and Kinetic Investigation on Electrogeneration of Hydroxyl Radicals for Water Purification publication-title: ACS EST Eng. doi: 10.1021/acsestengg.2c00318 – volume: 388 start-page: 121789 year: 2020 ident: ref_53 article-title: Electrochemical Activation of Persulfate on BDD and DSA Anodes: Electrolyte Influence, Kinetics and Mechanisms in the Degradation of Bisphenol A publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121789 – volume: 18 start-page: 1 year: 1997 ident: ref_83 article-title: The MATLAB ODE Suite publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827594276424 – volume: Volume 81 start-page: 231 year: 1968 ident: ref_72 article-title: Pulse Radiolysis Studies of Deaerated Aqueous Salicylate Solutions publication-title: Radiation Chemistry doi: 10.1021/ba-1968-0081.ch016 – volume: 57 start-page: 1658 year: 2024 ident: ref_22 article-title: Development of an Elementary Reaction-Based Kinetic Model to Predict the Aqueous-Phase Fate of Organic Compounds Induced by Reactive Free Radicals publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.4c00021 – ident: ref_56 – volume: 3 start-page: 335 year: 2023 ident: ref_26 article-title: Ozone- and Hydroxyl Radical-Mediated Oxidation of Pharmaceutical Compounds Using Ni-Doped Sb–SnO2 Anodes: Degradation Kinetics and Transformation Products publication-title: ACS Est Eng. doi: 10.1021/acsestengg.2c00337 – volume: 21 start-page: 11313 year: 2014 ident: ref_47 article-title: Catalytic Wet Air Oxidation of Bisphenol A Solution in a Batch-Recycle Trickle-Bed Reactor over Titanate Nanotube-Based Catalysts publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3042-1 – volume: 373 start-page: 123558 year: 2025 ident: ref_54 article-title: Clearing the Path: Unraveling Bisphenol a Removal and Degradation Mechanisms for a Cleaner Future publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2024.123558 – volume: 153 start-page: 153 year: 2002 ident: ref_71 article-title: Kinetic and Spectral Properties of Rhodamine 6G Free Radicals: A Pulse Radiolysis Study publication-title: J. Photochem. Photobiol. Chem. doi: 10.1016/S1010-6030(02)00265-4 – volume: 387 start-page: 124124 year: 2020 ident: ref_36 article-title: Degradation of Bisphenol A by Electrocatalytic Wet Air Oxidation Process: Kinetic Modeling, Degradation Pathway and Performance Assessment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124124 – volume: 4 start-page: 2807 year: 2016 ident: ref_51 article-title: A Comparative Study on Electrochemical Oxidation of Bisphenol A by Boron-Doped Diamond Anode and Modified SnO2-Sb Anodes: Influencing Parameters and Reaction Pathways publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.05.034 – volume: 255 start-page: 102 year: 2018 ident: ref_30 article-title: Sonochemical Preparation and Photocatalytic Application of Ag-ZnS-MWCNTs Composite for the Degradation of Rhodamine B under Visible Light: Experimental Design and Kinetics Modeling publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.01.154 – volume: 42 start-page: 499 year: 2008 ident: ref_73 article-title: Mineralization of Salicylic Acid in Acidic Aqueous Medium by Electrochemical Advanced Oxidation Processes Using Platinum and Boron-Doped Diamond as Anode and Cathodically Generated Hydrogen Peroxide publication-title: Water Res. doi: 10.1016/j.watres.2007.07.046 – volume: 32 start-page: 4656 year: 2025 ident: ref_38 article-title: Impact of Operating Parameters on the Electrooxidation of Methylene Blue and Ciprofloxacin: A Comprehensive Analysis and Degradation Pathway publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-025-35992-6 – volume: 37 start-page: 3716 year: 2003 ident: ref_61 article-title: Indirect Electrochemical Treatment of Bisphenol A in Water via Electrochemically Generated Fenton’s Reagent publication-title: Environ. Sci. Technol. doi: 10.1021/es034011e – volume: 22 start-page: 3059 year: 2024 ident: ref_11 article-title: Hydroxyl Radicals in Ozone-Based Advanced Oxidation of Organic Contaminants: A Review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-024-01772-w – volume: 36 start-page: 73 year: 2014 ident: ref_25 article-title: Large-Scale Experimental Validation of a Model for the Kinetics of Ozone and Hydroxyl Radicals with Natural Organic Matter publication-title: Ozone Sci. Eng. doi: 10.1080/01919512.2013.836447 – volume: 220 start-page: 6 year: 2013 ident: ref_59 article-title: Degradation of Bisphenol A by Ozonation and Determination of Degradation Intermediates by Gas Chromatography–Mass Spectrometry and Liquid Chromatography–Mass Spectrometry publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.01.064 – volume: 38 start-page: 101636 year: 2020 ident: ref_63 article-title: Kinetics and Mechanism of Sulfate Radical- and Hydroxyl Radical-Induced Degradation of Bisphenol A in VUV/UV/Peroxymonosulfate System publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2020.101636 – ident: ref_2 doi: 10.3390/coatings14081060 – volume: 30 start-page: 74916 year: 2023 ident: ref_43 article-title: Adsorbent Biochar Derived from Corn Stalk Core for Highly Efficient Removal of Bisphenol A publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-023-27545-6 – volume: 19 start-page: e202400105 year: 2024 ident: ref_17 article-title: Recent Advances in Detection of Hydroxyl Radical by Responsive Fluorescence Nanoprobes publication-title: Chem.—Asian J. doi: 10.1002/asia.202400105 – volume: 43 start-page: 1968 year: 2009 ident: ref_50 article-title: Electrochemical Degradation of Bisphenol A on Different Anodes publication-title: Water Res. doi: 10.1016/j.watres.2009.01.026 – volume: 91 start-page: 1266 year: 2013 ident: ref_60 article-title: H3PW12O40/TiO2 Catalyst-Induced Photodegradation of Bisphenol A (BPA): Kinetics, Toxicity and Degradation Pathways publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.02.023 – volume: 229 start-page: 119464 year: 2023 ident: ref_8 article-title: Integrating Anodic Sulfate Activation with Cathodic H2O2 Production/Activation to Generate the Sulfate and Hydroxyl Radicals for the Degradation of Emerging Organic Contaminants publication-title: Water Res. doi: 10.1016/j.watres.2022.119464 – volume: 160–161 start-page: 106 year: 2014 ident: ref_64 article-title: Formation of Genotoxic Quinones during Bisphenol A Degradation by TiO2 Photocatalysis and UV Photolysis: A Comparative Study publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.05.007 – volume: 12 start-page: 113778 year: 2024 ident: ref_4 article-title: A Comprehensive Review of the Electrochemical Advanced Oxidation Processes: Detection of Free Radical, Electrode Materials and Application publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2024.113778 – volume: 137 start-page: 233 year: 2018 ident: ref_32 article-title: Kinetic and Mechanistic Aspects of Hydroxyl Radical–mediated Degradation of Naproxen and Reaction Intermediates publication-title: Water Res. doi: 10.1016/j.watres.2018.03.002 – volume: 59 start-page: 113 year: 2024 ident: ref_33 article-title: Photocatalytic Degradation Process of Antibiotic Sulfamethoxazole by ZnO in Aquatic Systems: A Dynamic Kinetic Model Based on Contributions of OH Radical, Oxygenated Radical Intermediates and Dissolved Oxygen publication-title: J. Environ. Sci. Health Part A doi: 10.1080/10934529.2024.2339171 – volume: 129 start-page: 1688 year: 2025 ident: ref_24 article-title: Effects of a Carboxyl Group on the Products, Mechanism, and Kinetics of the OH Radical-Initiated Oxidation of 3-Butenoic Acid Under Low NOx Conditions publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.4c07849 – volume: 138 start-page: 2516 year: 2016 ident: ref_20 article-title: The Hydroxyl Radical Is a Critical Intermediate in the Voltammetric Detection of Hydrogen Peroxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13376 – volume: 17 start-page: 513 year: 1988 ident: ref_14 article-title: Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (·OH/·O− in Aqueous Solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555805 – volume: 12 start-page: 114245 year: 2024 ident: ref_44 article-title: Electrochemical Oxidation of Bisphenol A with a Fe-N-C/Persulfate Three-Dimensional Electrochemical System publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2024.114245 – volume: 240 start-page: 124929 year: 2020 ident: ref_69 article-title: Kinetic Study of the Degradation of Rhodamine B Using a Flow-through UV/Electro-Fenton Process with the Presence of Ethylenediaminetetraacetic Acid publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124929 – volume: 6 start-page: 418 year: 1996 ident: ref_80 article-title: An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds publication-title: SIAM J. Optim. doi: 10.1137/0806023 – volume: 257 start-page: 117902 year: 2019 ident: ref_7 article-title: Extremely Efficient Electrochemical Degradation of Organic Pollutants with Co-Generation of Hydroxyl and Sulfate Radicals on Blue-TiO2 Nanotubes Anode publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117902 – volume: 4 start-page: 346 year: 2013 ident: ref_28 article-title: Role of Hydroxyl Radicals During the Competitive Electrooxidation of Organic Compounds on a Boron-Doped Diamond Anode publication-title: Electrocatalysis doi: 10.1007/s12678-013-0150-5 – volume: 12 start-page: 113369 year: 2024 ident: ref_57 article-title: Degradation of Bisphenol A via the Electro–Fenton Process Using Nanostructured Carbon-Metal Oxide Anodes: Intermediates and Reaction Mechanisms Study publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2024.113369 – volume: 105 start-page: 950 year: 1980 ident: ref_76 article-title: Spectrophotometric Determination of Hydrogen Peroxide Using Potassium Titanium(IV) Oxalate publication-title: Analyst doi: 10.1039/an9800500950 – volume: 228 start-page: 806 year: 2013 ident: ref_74 article-title: Fabrication of Cerium-Doped Lead Dioxide Anode with Improved Electrocatalytic Activity and Its Application for Removal of Rhodamine B publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.05.064 – ident: ref_81 – volume: 362 start-page: 131697 year: 2025 ident: ref_41 article-title: Degradation of Multicomponent Pharmaceutical Mixtures by Electrochemical Oxidation: Insights about the Process Evolution at Varying Applied Currents and Concentrations of Organics and Supporting Electrolyte publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2025.131697 – volume: 79 start-page: 975 year: 2010 ident: ref_58 article-title: Aromatic Intermediate Formation during Oxidative Degradation of Bisphenol A by Homogeneous Sub-Stoichiometric Fenton Reaction publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.03.030 – volume: 17 start-page: 1027 year: 1988 ident: ref_13 article-title: Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555808 – volume: 14 start-page: 1041 year: 1985 ident: ref_12 article-title: Reactivity of HO2/O−2 Radicals in Aqueous Solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555739 – volume: 240 start-page: 117500 year: 2024 ident: ref_1 article-title: Recent Developments on Advanced Oxidation Processes for Degradation of Pollutants from Wastewater with Focus on Antibiotics and Organic Dyes publication-title: Environ. Res. doi: 10.1016/j.envres.2023.117500 – volume: 170 start-page: 113451 year: 2024 ident: ref_23 article-title: Enhanced Removal of Tetracycline Hydrochloride by Activation of Persulfate with Sludge-Red Mud Magnetic Biochar: Synergistic Effect between Adsorption and Radical-Nonradical Pathways publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2024.113451 – volume: 75 start-page: 11 year: 2015 ident: ref_31 article-title: Degradation of Pharmaceuticals in UV (LP)/H2O2 Reactors Simulated by Means of Kinetic Modeling and Computational Fluid Dynamics (CFD) publication-title: Water Res. doi: 10.1016/j.watres.2015.02.014 – volume: 216 start-page: 114601 year: 2023 ident: ref_52 article-title: Effectiveness and Degradation Pathways of Bisphenol A (BPA) Initiated by Hydroxyl Radicals and Sulfate Radicals in Water: Initial Reaction Sites Based on DFT Prediction publication-title: Environ. Res. doi: 10.1016/j.envres.2022.114601 – volume: 311 start-page: 136993 year: 2023 ident: ref_10 article-title: Wastewater Treatment by Anodic Oxidation in Electrochemical Advanced Oxidation Process: Advance in Mechanism, Direct and Indirect Oxidation Detection Methods publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136993 – volume: 296 start-page: 398 year: 2016 ident: ref_35 article-title: Fered-Fenton Process for the Degradation of 1,4-Dioxane with an Activated Carbon Electrode: A Kinetic Model Including Active Radicals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.03.090 – volume: 166 start-page: 12 year: 2016 ident: ref_46 article-title: Mechanistic Study of Photo-Oxidation of Bisphenol-A (BPA) with Hydrogen Peroxide (H2O2) and Sodium Persulfate (SPS) publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.09.043 – volume: 280 start-page: 623 year: 2015 ident: ref_55 article-title: Sono-Activated Persulfate Oxidation of Bisphenol A: Kinetics, Pathways and the Controversial Role of Temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.06.061 – volume: 36 start-page: 1 year: 2006 ident: ref_40 article-title: Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380500326564 – volume: 1 start-page: 261 year: 1999 ident: ref_70 article-title: Excited State and Free Radical Properties of Rhodamine 123: A Laser Flash Photolysis and Radiolysis Study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a807013j – volume: 698 start-page: 134197 year: 2020 ident: ref_34 article-title: Modeling the Degradation and Disinfection of Water Pollutants by Photocatalysts and Composites: A Critical Review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134197 – volume: 35 start-page: 957 year: 2018 ident: ref_75 article-title: Evaluation of direct photolysis, electrooxidation and photoelectrooxidation for Rhodamine-B degradation publication-title: Braz. J. Chem. Eng. doi: 10.1590/0104-6632.20180353s20170032 – volume: 12 start-page: 4265 year: 2017 ident: ref_68 article-title: Electrochemical Oxidation of Rhodamine B: Optimization and Degradation Mechanism publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2017.05.60 – volume: 21 start-page: 20170075 year: 2018 ident: ref_62 article-title: Reaction Rate Constants of Hydroxyl Radicals with Micropollutants and Their Significance in Advanced Oxidation Processes publication-title: J. Adv. Oxid. Technol. |
SSID | ssj0023259 |
Score | 2.4318686 |
Snippet | The efficiency of electrochemical advanced oxidation processes (EAOPs) is fundamentally governed by hydroxyl-radical (•OH) generation. While direct... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 4785 |
SubjectTerms | Benzhydryl Compounds - chemistry Bisphenol A Bisphenol A Compounds By products Chromatography Efficiency Electrochemical reactions Electrochemical Techniques - methods Electrodes Equilibrium Evolution Gas Chromatography-Mass Spectrometry Hydrogen Peroxide - chemistry Hydroxyl Radical - analysis Hydroxyl Radical - chemistry Investigations Kinetics Methods Mineralization Morphology Oxidation Oxidation-Reduction Oxidation-reduction reaction Phenols Phenols - chemistry Pollutants Toxicity Trends Wastewater treatment |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJtAQUYCcYq6sZ3Y4YLa0tUKqVBRKu0tsmOvGkSTpdlK9K_wa5lxvNsNB6TcPIljjT0Pe_x9AG-NccZauvbLpccERaAdrIVNZWZ5rcrCqlDtfvylmJ3Jz_N8Hjfc-lhWubaJwVC7rqY98j1BUGToOzn_uPyVEmsUna5GCo3bcIegy6ikS81vEi7BA1lahj4oLfKyGArfBab5e82Pix6TB8KmyUcu6V_DvOWZxlWTW25o-gDux_iR7Q8Kfwi3fPsI7g6MkteP4c_JJZ28UC0zw9COTTGUZN2CHTQ9FXN1-Cb7FG4msqOBAKeOiAHs6-9m4Ff6gDKnDaEGs1Ns8xfLJuCIsOPANs0O0PE51rWhg0O69thG7F12MjCAU4-za0cVMj_ZNxOOgvoncDY9-n44SyP9QlpjlLJKcymNUrkR1tNuE2oOc01Vcp8trHG5dJknPLRFxlG5mS2yhclR9aUzxtuJM-Ip7LRd658Ds_gRzTNjtFdoNCbGYg-69LnXxkk-SeDdWgPVckDZqDA7IU1V25pK4D2pp6LFhyOrTbxDgL3Q6Kp9LYVQuixQcnckiYumHjevFVzFRdtXN1MsgTebZnqTCtFa310FGa408eQk8GyYD5s_lsG58yIBPZopGwGC8h63tM15gPQmoD189Iv__9dLuMeJf5jQY4td2FldXvlXGBSt7Osw8_8Cwp4NyA priority: 102 providerName: ProQuest |
Title | Predicting the Fate of Bisphenol A During Electrochemical Oxidation: A Simple Semiempirical Method Based on the Concentration Profile of Hydroxyl Radicals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40429926 https://www.proquest.com/docview/3211997622 https://www.proquest.com/docview/3212780961 https://pubmed.ncbi.nlm.nih.gov/PMC12112118 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9swED76wmBfxt7rrQsabOyTt1iWLXlQStMmC4N0oV0g34xkK8yjtbskheav7NfuTnZC3I1B8BedItt30t1Zp-cBeKd1ro2hY79cWExQQlwHs9D4IjA8k0lspKt2H53Hw4n4Oo2mO7BmG21e4OKfqR3xSU3mVx_vfq2OccIfUcaJKfun4uf1AhMBwpmJdmEffZKkKToSm_0EDBscbRp98PBpga5L4P_q3XJO95foLR_Vrp_cckiDx_CoiSTZSa36J7Bjy6fwoOaWXD2D3-M57cFQVTPDII8NMKhk1Yz1igWVdVXYk525M4qsX1PhZA12APt2V9RMS59R5rIg_GB2iW32-qZwiCJs5HinWQ9dYM6q0g1wSgcgywaFl41rLnAacbjKqVbmil1otym0eA6TQf_76dBviBj8DOOVpR8JoaWMdGgsfXdCHWLWKRNug5nReSTywBIy2izgqObAxMFMR2gESa61Nd1chy9gr6xKewDM4J8oHmitrMTlo6sNjqASG1mlc8G7HrxfayC9qfE2UsxTSFPptqY8-EDqSckw8Mky3ZwmwFHo6dITJcJQqiRGycOWJE6frN28VnC6tr40JNw7DNQ49-Dtppl6UklaaatbJ8OlIsYcD17W9rC5Y-HcPI89UC1L2QgQqHe7pSx-OHBvgtzDn3r1_9t-DQ85MRETjmx8CHvL-a19g-HR0nRgV04lXtXgSwf2e_3z8UWHHFbUcXPiDz43FHY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASNRcYqa2Hk4SAj1tdrSbqloK-0t2IlXTUWTpdkK9q_wI_iNzDjJdsOBW6Xc7MS2ZsbjiWe-D-CdUrnSmsp-eWAwQBG4D2ZCu4GveRYnkY5ttvvoMBqeBp_H4XgF_nS1MJRW2e2JdqPOq4z-kW8IgiJD38n5p-kPl1ij6Ha1o9Bo1GLfzH9iyFZ_3NtB-a5zPtg92R66LauAm6HznblhEKg4DpXQhn6i4IQwhIoTbvyJVnkY5L4hmK-Jz3HOvo78iQpxRUmulNFergR-9xbcRsfrkUXF4-sAT3BLzuajz3OjMImaRHshEm-jOL-oMVghLJyw5wL_dQRLnrCfpbnk9gYP4H57XmWbjYI9hBVTPoI7DYPl_DH8Prqkmx7KnWZ4lGQDPLqyasK2ipqSxyp8k-3YSki22xDuZC1CAfvyq2j4nD5gn-OCUIrZMbaZi2lhcUvYyLJbsy10tDmrSjvANpVZli3WLztqGMdpxOE8p4yc7-yrsldP9RM4vRHBPIXVsirNc2AaPyK5r5Q0MW5SntI4gkxMaKTKA-45sN5JIJ02qB4pRkMkqXRZUg68J_GkZOy4sky1NQs4Cq0u3ZSBELFMIuy51uuJRpr1mzsBp-0mUafXKu3A20UzvUmJb6WprmwfHkvi5XHgWaMPixkH9jDBIwdkT1MWHQg6vN9SFmcWQpyA_fCRL_4_rzdwd3gyOkgP9g73X8I9TtzHhFwbrcHq7PLKvMID2Uy_tlbA4NtNm91fmgtLwQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIhAXxD-BAkai4hTtxk7iBAmhttvVltKyolTaW7ATRwTRZGm2gn0VHoWnY8ZJthsO3CrlZie2NZ6_ePx9AK-UypTWdO2X-wYTFIF2MBXa9T3NUxmHWtpq96PjcHLqv58Fsw34092FobLKziZaQ51VKf0jHwiCIkPfyfkgb8sipqPxu_kPlxik6KS1o9NotsihWf7E9K1-ezBCWW9zPt7_vDdxW4YBN0VHvHAD31dSBkpoQz9UcHKYTsmYGy_XKgv8zDME-ZV7HOfv6dDLVYCrizOljB5mSuB3r8F1KQKPdEzOLpM9wS1Rm4f-zw2DOGyK7oWIh4Pi21mNiQvh4gQ9d_ivU1jziv2KzTUXOL4Dt9vYle00m-0ubJjyHtxo2CyX9-H39JxOfaiOmmFYycYYxrIqZ7tFTYVkFb7JRvZWJNtvyHfSFq2AffxVNNxOb7DPSUGIxewE28zZvLAYJuzIMl2zXXS6GatKO8AeXbksW9xfNm3Yx2nEyTKj6pzv7JOyx1D1Azi9EsE8hM2yKs1jYBo_EnFPqchINFhDpXGEKDaBiVTm86ED250EknmD8JFgZkSSStYl5cBrEk9Cio8rS1V7fwFHodUlO5EvhIziEHtu9Xqiwqb95k7ASWsw6uRyezvwctVMb1IRXGmqC9uHy4g4ehx41OyH1Yx9G1jw0IGot1NWHQhGvN9SFl8tnDiB_OETPfn_vF7ATVS45MPB8eFTuMWJBplAbMMt2FycX5hnGJst9HOrBAy-XLXW_QXTXE_3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+Fate+of+Bisphenol+A+During+Electrochemical+Oxidation%3A+A+Simple+Semiempirical+Method+Based+on+the+Concentration+Profile+of+Hydroxyl+Radicals&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Je%C4%8Dmenica+Du%C4%8Di%C4%87%2C+Marija&rft.au=Vasi%C4%87+Ani%C4%87ijevi%C4%87%2C+Dragana&rft.au=A%C4%87imovi%C4%87%2C+Danka&rft.au=%C5%A0vorc%2C+%C4%BDubom%C3%ADr&rft.date=2025-05-16&rft.pub=MDPI+AG&rft.issn=1422-0067&rft.volume=26&rft.issue=10&rft_id=info:doi/10.3390%2Fijms26104785&rft.externalDocID=A843378965 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |