Eplerenone pretreatment protects the myocardium against ischaemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway in diabetic rats

We investigated the eplerenone-induced, PI3K/Akt- and GSK-3β-mediated cardioprotection against ischemia/reperfusion (I/R) injury in diabetic rats. The study groups comprising diabetic rats were treated for 14 days with 150 mg/kg/day eplerenone orally and 1 mg/kg wortmannin (PI3K/Akt antagonist) intr...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular biochemistry Vol. 446; no. 1-2; pp. 91 - 103
Main Authors Mahajan, Umesh B., Patil, Pradip D., Chandrayan, Govind, Patil, Chandragouda R., Agrawal, Yogeeta O., Ojha, Shreesh, Goyal, Sameer N.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2018
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigated the eplerenone-induced, PI3K/Akt- and GSK-3β-mediated cardioprotection against ischemia/reperfusion (I/R) injury in diabetic rats. The study groups comprising diabetic rats were treated for 14 days with 150 mg/kg/day eplerenone orally and 1 mg/kg wortmannin (PI3K/Akt antagonist) intraperitoneally with eplerenone. On the 15th day, the rats were exposed to I/R injury by 20-min occlusion of the left anterior descending coronary artery followed by 30 min of reperfusion. The hearts were processed for biochemical, molecular, and histological investigations. The I/R injury in diabetic rats inflicted a significant rise in the oxidative stress and apoptosis along with a decrease in the arterial and ventricular function and the expressions of PI3K/Akt and GSK-3β proteins. Eplerenone pretreatment reduced the arterial pressure, cardiac inotropy, and lusitropy. It significantly reduced apoptosis and cardiac injury markers. The histology revealed cardioprotection in eplerenone-treated rats. Eplerenone up-regulated the PI3K/Akt and reduced the GSK-3β expression. The group receiving wortmannin with eplerenone was deprived eplerenone-induced cardioprotection. Our results reveal the eplerenone-induced cardioprotection against I/R injury in diabetic rats and substantiate the involvement of PI3K/Akt and GSK-3β pathways in its efficacy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-018-3276-1