Enhancing Mixed Traffic Flow with Platoon Control and Lane Management for Connected and Autonomous Vehicles

As autonomous driving technology advances, connected and autonomous vehicles (CAVs) will coexist with human-driven vehicles (HDVs) for an extended period. The deployment of CAVs will alter traffic flow characteristics, making it crucial to investigate their impacts on mixed traffic. This study devel...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 3; p. 644
Main Authors Peng, Yichuan, Liu, Danyang, Wu, Shubo, Yang, Xiaoxue, Wang, Yinsong, Zou, Yajie
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.01.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As autonomous driving technology advances, connected and autonomous vehicles (CAVs) will coexist with human-driven vehicles (HDVs) for an extended period. The deployment of CAVs will alter traffic flow characteristics, making it crucial to investigate their impacts on mixed traffic. This study develops a hybrid control framework that integrates a platoon control strategy based on the “catch-up” mechanism with lane management for CAVs. The impacts of the proposed hybrid control framework on mixed traffic flow are evaluated through a series of macroscopic simulations, focusing on fundamental diagrams, traffic oscillations, and safety. The results illustrate a notable increase in road capacity with the rising market penetration rate (MPR) of CAVs, with significant improvements under the hybrid control framework, particularly at high MPRs. Additionally, traffic oscillations are mitigated, reducing shockwave propagation and enhancing efficiency under the hybrid control framework. Four surrogate safety measures, namely time to collision (TTC), criticality index function (CIF), deceleration rate to avoid a crash (DRAC), and total exposure time (TET), are utilized to evaluate traffic safety. The results indicate that collision risk is significantly reduced at high MPRs. The findings of this study provide valuable insights into the deployment of CAVs, using control strategies to improve mixed traffic flow operations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25030644