Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: New platform for enzyme-free detection of hydrogen peroxide

We report a microwave sequential bottom-up route to produce green and blue luminescent graphene quantum dots (g-GQDs and b-GQDs) with size-tunable and switchable functionalities by tailoring the diameter size and functional groups via microwave carbonization and aromatization processes from acetylac...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 81; pp. 514 - 524
Main Authors Umrao, Sima, Jang, Min-Ho, Oh, Jung-Hwan, Kim, Guntae, Sahoo, Sumanta, Cho, Yong-Hoon, Srivastva, Anchal, Oh, Il-Kwon
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.01.2015
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report a microwave sequential bottom-up route to produce green and blue luminescent graphene quantum dots (g-GQDs and b-GQDs) with size-tunable and switchable functionalities by tailoring the diameter size and functional groups via microwave carbonization and aromatization processes from acetylacetone as a starting organic solvent. The b-GQDs as the final product show only one emission peak at 433nm and pH-independent blue luminescence, because two-step microwave irradiation could reduce the size and the oxygen-functional groups of the g-GQDs as an intermediate product. Also, the b-GQDs provide an exemplar enzyme-free platform for hydrogen peroxide detection through the electrochemical sensing due to much higher electron density and electron donating properties. In contrast, the g-GQDs show two different switchable photoluminescent emissions at ∼460nm (P1) and ∼500nm (P2): the P1 emission with sky-blue fluorescence originates from randomly conjugated oxygen-functional groups on the basal plane and/or edge of the g-GQDs and the P2 emission with green fluorescence results from quasi-molecular fluorophores formed by the electronic coupling of carboxylic acid groups.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2014.09.084