Toward an Ultralow-Power Onboard Processor for Tongue Drive System

The Tongue Drive System (TDS) is a new unobtrusive, wireless, and wearable assistive device that allows for real-time tracking of the voluntary tongue motion in the oral space for communication, control, and navigation applications. The latest TDS prototype appears as a wireless headphone and has be...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. II, Express briefs Vol. 62; no. 2; pp. 174 - 178
Main Authors Viseh, Sina, Ghovanloo, Maysam, Mohsenin, Tinoosh
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1549-7747
1558-3791
DOI10.1109/TCSII.2014.2387683

Cover

Loading…
More Information
Summary:The Tongue Drive System (TDS) is a new unobtrusive, wireless, and wearable assistive device that allows for real-time tracking of the voluntary tongue motion in the oral space for communication, control, and navigation applications. The latest TDS prototype appears as a wireless headphone and has been tested in human subject trials. However, the robustness of the external TDS (eTDS) in real-life outdoor conditions may not meet safety regulations because of the limited mechanical stability of the headset. The intraoral TDS (iTDS), which is in the shape of a dental retainer, firmly clasps to the upper teeth and resists sensor misplacement. However, the iTDS has more restrictions on its dimensions, limiting the battery size and consequently requiring a considerable reduction in its power consumption to operate over an extended period of two days on a single charge. In this brief, we propose an ultralow-power local processor for the TDS that performs all signal processing on the transmitter side, following the sensors. Assuming the TDS user on average issuing one command/s, implementing the computational engine reduces the data volume that needs to be wirelessly transmitted to a PC or smartphone by a factor of 1500×, from 12 kb/s to ~8 b/s. The proposed design is implemented on an ultralow-power IGLOO nano field-programmable gate array (FPGA) and is tested on AGLN250 prototype board. According to our post-place-and-route results, implementing the engine on the FPGA significantly drops the required data transmission, while an application-specific integrated circuit (ASIC) implementation in a 65-nm CMOS results in a 15× power saving compared to the FPGA solution and occupies a 0.02-mm 2 footprint. As a result, the power consumption and size of the iTDS will be significantly reduced through the use of a much smaller rechargeable battery. Moreover, the system can operate longer following every recharge, improving the iTDS usability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2014.2387683