RF Transconductor Linearization Robust to Process, Voltage and Temperature Variations
Software-defined radio receivers increasingly exploit linear RF V-I conversion, instead of RF voltage gain, to improve interference robustness. Unfortunately, the linearity of CMOS inverters, which are often used to implement V-I conversion, is highly sensitive to Process, Voltage and Temperature va...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 50; no. 11; pp. 2591 - 2602 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Software-defined radio receivers increasingly exploit linear RF V-I conversion, instead of RF voltage gain, to improve interference robustness. Unfortunately, the linearity of CMOS inverters, which are often used to implement V-I conversion, is highly sensitive to Process, Voltage and Temperature variations. This paper proposes a more robust technique based on resistive degeneration. To mitigate third-order IM3 distortion induced by the quadratic MOSFET I-V characteristic, a new linearization technique is proposed which exploits a floating battery by-pass circuit and replica biasing to improve IIP3 in a robust way. This paper explains the concept and analyzes linearity improvement. To demonstrate operation, an LNTA with current domain mixer is implemented in a 45 nm CMOS process. Compared to a conventional inverter based LNTA with the same transconductance, it improves IIP3 from 2 dBm to a robust P IIP3 of 8 dBm at the cost of 67% increase in power consumption. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2015.2453964 |