Impact of intraguild predation by adult Harmonia axyridis (Coleoptera: Coccinellidae) on Aphis glycines (Hemiptera: Aphididae) biological control in cage studies

The soybean aphid, Aphis glycines Matsumura, has become a principal arthropod pest of soybean in the U.S. since its first detection in 2000. This species threatens soybean production through direct feeding damage and virus transmission. A diverse guild of insect predators feeds on soybean aphid in M...

Full description

Saved in:
Bibliographic Details
Published inBiological control Vol. 40; no. 3; pp. 386 - 395
Main Authors Gardiner, M.M., Landis, D.A.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The soybean aphid, Aphis glycines Matsumura, has become a principal arthropod pest of soybean in the U.S. since its first detection in 2000. This species threatens soybean production through direct feeding damage and virus transmission. A diverse guild of insect predators feeds on soybean aphid in Michigan including the exotic coccinellid Harmonia axyridis, the native gall midge Aphidoletes aphidimyza and the native lacewing Chrysoperla carnea. In addition to feeding on A. glycines some members of this guild may also engage in intraguild predation. These interactions may produce positive, negative, or neutral impacts on A. glycines biological control. We explored the impact of intraguild predation on soybean aphid population dynamics by comparing aphid populations in microcosms with either A. aphidimyza larvae or C. carnea larvae alone, with both a H. axyridis adult and either A. aphidimyza or C. carnea larvae, and without predators. When H. axyridis was present with larval A. aphidimyza or C. carnea, the lady beetle acted as an intraguild predator. However, intraguild feeding did not result in a release of aphid populations compared with microcosms containing only the intraguild and aphid prey. A similar result was found in field cages. Cages allowing large predators had reduced numbers of A. aphidimyza and C. carnea larvae but also significantly fewer aphids compared with predator exclusion cages. Thus, in both lab and field studies the direct impact of H. axyridis on A. glycines overcame its negative impact as an intraguild predator. Together, these studies indicate that while the exotic H. axyridis does act as an intraguild predator and may contribute to local declines in A. aphidimyza and C. carnea, it is also currently important in overall biological control of A. glycines.
Bibliography:http://dx.doi.org/10.1016/j.biocontrol.2006.11.005
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1049-9644
1090-2112
DOI:10.1016/j.biocontrol.2006.11.005